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Announcements

TA's
Katie 2pm lab

Ben 5pm lab

Joe noon & 1pm lab

TA office hours Kidder M111
Katie Tues 2-3pm

Ben Thur noon-1pm

Joe Mon 3-4pm & Thur 9-10am

Reminder my ST512 office hours :

Tuesday 3-5pm Cordley 3003

Friday 11-noon Kidder 76

First homework posted!



Review

Simple linear regression:

model for the mean

interpreting intercept and slope

assumptions and residuals

R output

Types of statistical inference



The response variable is the 

measurement we are interested in 

explaining or predicting.

The explanatory variable is the 

measurement we want to use to 

explain or predict the response.

Y

X



The simple linear regression model

μ{Y|X} = β0 + β1 X

The mean response as a function of the explanatory variable 

is a straight line.

Parameters

Intercept Slope

Describes the relationship between the response and 

explanatory variable with two parameters.



Intercept and Slope

The intercept gives the mean 

response at an explanatory value of 

zero.

The slope gives the change in the 

mean response for a 1 unit change

in the explanatory variable.



Your turn

A simple linear regression of stopping distance (ft) on speed (mph) : 

μ{dist | speed} = β0 + β1Speed

from 50 cars, gave the following estimates:

Parameter Estimate 95% confidence interval

Intercept, β0 -17.6 -31.2,  -4.0

Slope, β1 3.9 3.1,  4.8

On your own, write down a two sentence summary 

interpreting the slope estimate.





Your turn

It is estimated that for every one mile an hour 

increase in speed the mean stopping distance 

increases by 3.9 feet (95% CI 3.1 to 4.8).

With 95% confidence, for every one mile an hour 

increase in speed the mean stopping distance 

increases by between 3.1 and 4.8 feet 



1. The means of the subpopulations fall on 

a straight line function of the explanatory 

variable.

2. The subpopulations have the same 

standard deviation, σ.

3. At each value of the explanatory, the

response has a Normal distribution.

4. Observations are independent.

Assumptions

There are no assumptions on the explanatory variable!

Var { Y | X }  = σ2

μ { Y | X }  = β0 + β1 X



If the linear effect of the explanatory 

variable is removed from the 

response, then what's left should be:

1. Normally distributed

2. Have mean zero. 

3. Have standard deviation, σ.

4. Be independent.

Assumptions

An alternative view of 

the assumptions

I.e. ( Y - ( β0 + β1 X ) ) are independent Normal with 

mean zero and standard deviation σ



Your turn

Someone suggests that we should 

have done the regression of log(dist) 

against log(speed) (because the relationship probably 

isn’t additive, e.g. the difference in stopping distance is probably bigger 

between 60 and 70 mph than it is between 10 and 20 mph)

How would you decide whether their 

suggestion is a good one?



Your turndist ~ speed

log(dist) ~ log(speed)



Inference in simple linear regression

t-ratios of the estimates of the slope, 
intercept, mean response, and 
predicted response all have a 
Student's t-distribution with n - 2
degrees of freedom.

Competing (nested) models can be 
compared using an extra Sum of 
Squares F-test. 

by least squares



Your turn
> summary(fit2)

Call:

lm(formula = log(dist) ~ log(speed), data = cars)

Residuals:

Min       1Q   Median       3Q      Max 

-1.00215 -0.24578 -0.02898  0.20717  0.88289 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -0.7297     0.3758  -1.941   0.0581 .  

log(speed)    1.6024     0.1395  11.484 2.26e-15 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4053 on 48 degrees of freedom

Multiple R-squared:  0.7331, Adjusted R-squared:  0.7276 

F-statistic: 131.9 on 1 and 48 DF,  p-value: 2.259e-15

1. What test is this p-value 

for?

3. What test is this p-value for?

2. How is this t-statistic calculated?





Which dataset has the largest σ (subpopulation response sd)?

Which dataset has the largest sX (explanatory sd)?



A larger sample (larger n) does not

decrease σ, we simply get a more 

precise estimate.

A larger sample (larger n) does 

decrease the standard error on the 

slope and intercept estimates.

σ is often outside the control of the researcher, but sometimes it can 

be decreased by improving the measurement of the response. 

Eg. using a digital thermometer, rather than one of those color change 

magnets to measure temperature.

The standard error of the slope and intercept also depend on how you 

choose X (if you can).  Normally it's a balance between low standard 

error, and the ability to check assumptions and will depend on your 

questions of interest.



The fitted value describes the estimated mean for 

an observation.  For the ith observation the fitted 

value is,

fittedi = μ̂{Yi|Xi} = β ̂0 + β̂1Xi

The residual is the difference between the 

observed response and it's fitted value

residuali = Yi - fittedi = Yi - ( β ̂0 + β̂1Xi )

The appropriateness of the linear regression model is 

checked by looking at plots of the residuals

Review in lab and homework



Population and Causal Inference

Experimental unit: the object to which the treatment is 

applied.

Sampling unit: the object that is selected from a population.

Observational unit: the object that measurements are taken 

on.  

Population inference (statistical inference beyond the units in 

the study to a wider population) is justified if the sampling units 

in the study are a random sample from the population.

Causal inference (statistical inference that the treatment 

caused the differences observed in the study) is justified if the 

experimental units in the study were randomly assigned to 

treatments.



In simple (and multiple) linear regression

To infer a cause-effect relationship the researcher 
must decide the levels of the explanatory variable they 
are going to measure, and then randomly assign their 
subjects to those levels.

If the subjects are not randomly assigned to 
predetermined levels, or the explanatory variables are 
not under the control of the researcher (i.e. they 
simply observe it) causal inference is not justified.

In regression, the “treatments” are specific values of the explanatory variables.  

Experimental units must be randomly assigned to the values of the explanatory 

variables for causal inference to be valid.

We can still talk about a relationship or association between the variables 

but we must avoid causal language, (e.g. avoid saying “X increases Y”)



... all models are wrong, but some are useful.

Regression models, like all models, are never 

going to be a perfect description of reality.  

We will always keep two things in mind:

* we want our models to be good approximate 

descriptions of reality (i.e. not too wrong)

* we want our models to be useful in answering 

our scientific questions of interest

George E. P. Box



General approach

1. Fit a regression model that is designed 
to answer your questions. 

2. Check the validity of the model

3. Answer your questions of interest using 
the model and make appropriate 
inferences.

If it's OK, proceed.  If it isn't OK, refine the model.

for hypothesis testing and estimation




