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Your turn

Consider the model:

μ{ flowers | light, early} = 

β0 + β1light + β2early + β3(light × early)

What is the mean flowers per plant for units in the 

late treatment group?

What is the mean flowers per plant for units in the 

early treatment group?



Separate lines model

μ{ flowers | light, early} = 

β0 + β1light + β2early + β3(light × early)

The effect of light intensity depends on timing

early early

early

late



Interaction terms

Two variables are said to interact if the effect of one 

variable on the mean response depends on the other 

variable.

β3(light × early) is called an interaction term.  In our 

example it allows the effect of intensity on mean number 

of flowers to depend on whether the timing was early or 

late.  In this example, it allowed the mean for the early 

units to have a different slope with respect to light from 

the late units.

I.e. it allows light and early to interact.



Does the effect of the intensity depend on the 

timing of light treatment?

Parallel lines: the effect of light intensity doesn't depend on timing,

μ{ flowers | light, early} =  β0 + β1light + β2early

Separate lines: the effect of light intensity depends on timing

μ{ flowers | light, early} = 

β0 + β1light + β2early + β3(light × early)

What’s the difference?

If β3 = 0, the separate lines model reduces to the parallel lines model.

So, to answer our question, we could use the separate lines model and 

ask is β3 = 0?

“...questions of interest are translated to 

statements about parameters.”



> fit_sep <- lm(Flowers ~ Intens + early + I(Intens * early), data = 

case0901)

> summary(fit_sep)

Call:

lm(formula = Flowers ~ Intens + early + I(Intens * early), data = case0901)

Residuals:

Min     1Q Median     3Q    Max 

-9.516 -4.276 -1.422  5.473 11.938 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)       71.623333   4.343305  16.491 4.14e-13 ***

Intens -0.041076   0.007435  -5.525 2.08e-05 ***

early             11.523333   6.142361   1.876   0.0753 .  

I(Intens * early)  0.001210   0.010515   0.115   0.9096    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 6.598 on 20 degrees of freedom

Multiple R-squared: 0.7993, Adjusted R-squared: 0.7692 

F-statistic: 26.55 on 3 and 20 DF,  p-value: 3.549e-07 

β0

β1

β2

β3

There is no evidence that the effect of Intensity depends on 

timing.

separate lines model



> fit_par <- lm(Flowers ~ Intens + early, data = case0901)

> summary(fit_par)

Call:

lm(formula = Flowers ~ Intens + early, data = case0901)

Residuals:

Min     1Q Median     3Q    Max 

-9.652 -4.139 -1.558  5.632 12.165 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 71.305834   3.273772  21.781 6.77e-16 ***

Intens -0.040471   0.005132  -7.886 1.04e-07 ***

early       12.158333   2.629557   4.624 0.000146 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 6.441 on 21 degrees of freedom

Multiple R-squared: 0.7992, Adjusted R-squared:  0.78 

F-statistic: 41.78 on 2 and 21 DF,  p-value: 4.786e-08 

β0

β1

β2

Increasing light intensity decreased the mean number of flowers per plant by 4.0 flowers 

for every 100 μmol/m2/sec.

Beginning the light treatments 24 days before PFI increased the mean number of 

flowers per plant by 12.1 compared to beginning light treatments at PFI.

parallel lines model





Today

A couple of points on constructed 

variables

Another example of multiple 

regression

Some new plotting methods



A collection of indicator variables can be used for 

variables with more than two categories.

L300 could be an indicator for Intensity = 300.

L450 could be an indicator for Intensity = 450.

... and so on

μ{ flowers | light, early} =  β0 + β1L300 + β2L450 +

+ β3L600+ β4L750 + β5L900 + β2early

Indicators for more than two categories



Your turn

What’s the mean number of flowers 

when intensity is 300?

What’s the mean number of flowers 

when intensity is 150?

μ{ flowers | light, early} =  β0 + β1L300 + β2L450 +

+ β3L600+ β4L750 + β5L900 + β6early



To fully represent I categories you need I-1 indicator 

variables.

The category without an indicator variable, becomes the 

baseline category.  

A parameter (β) for an indicator variable, gives that level it's 

own intercept, and the parameter describes the difference 

between the intercept for that level and the baseline level.

A parameter (β) for an interaction between an indicator and 

another variable, gives that level it's own slope (w.r.t to the 

interacting variable) and the parameter describes the 

difference between the slope for that level and the slope for 

the baseline level.

If in doubt: work out the models for the mean for each 

category.



Squared terms for curvature

μ{ corn yield | rainfall } =  β0 + β1rainfall + β2rainfall2



Shorthand

Shorthand: UPPERCASE for indicator variables,

leave out parameters

μ{ flowers | Intensity, early} = INTENSITY + early

μ{ flowers | Intensity, Time} = INTENSITY + TIME

μ{ flowers | Intensity, Time} = Intensity + TIME

μ{ flowers | Intensity, Time} = Intensity + TIME +       

(Intensity × TIME)

μ{ corn yield | rainfall } =  rainfall + rainfall2



Case Study 9.2 Mammalian Brain Size 

Big brains are better, but come with costs.

We know bigger animals would have bigger 

brains in general, but if we could remove that 

effect, what else would be related to larger 

brains?

Observed average brain weight, body weight, 

gestation length and litter size for 96 mammals.

What characteristics are associated with large 

brains, after accounting for body size?



head(case0902)

Species Brain  Body Gestation Litter

1            Quokka 17.50 3.500        26    1.0

2          Hedgehog  3.50 0.930        34    4.6

3        Tree shrew  3.15 0.150        46    3.0

4  Elephant shrew I  1.14 0.049        51    1.5



Scatterplot matrix
all pairwise scatterplots

plotmatrix(case0902[, -1])
not the first column



plotmatrix(case0902[, -1]) + 

scale_x_log10() + 

scale_y_log10()

Don’t use log unless it helps!



library(GGally)

# to log transform need to do each column

library(plyr)

case0902log <- colwise(log10, is.numeric)(case0902)

case0902log$Species <- case0902$Species

ggpairs(case0902log,columns = c(1:4))

better version



Or explore “by hand”

qplot(Gestation, Body,

data = case0902,

log = "xy")

Positive 

correlation 

between 

brain weight and 

body weight

Positive correlation 

between 

Gestation length 

and brain weight

But maybe that is because 

there is a relationship between 

body weight and gestation 

length.

qplot(Body, Brain, data = case0902, 

log = "xy")

qplot( Gestation, Brain, data = case0902 ,

log = "xy")

Similarly for litter size



Your turn

What is the effect of log(gestation)?

How would we interpret β2?

μ{log(brain) | gestation, body, litter} = 

β0 + β1log(body) + β2 log(gestation) 



Interpretation depends on what else is in the 

model

The interpretation of β1 is different in the two models:

1: μ{brain | gestation}           = β0 + β1gestation

2: μ{brain | gestation, body} = β0 + β1gestation + β2body

1: β1 is the rate of change of brain weight with 

changes in gestation length, over all mammals.

2: β1 is the rate of change of brain weight with 

changes in gestation length, holding body size fixed 

(or within mammals of the same body size).

β1 in 1 could be non-zero, because brain weight and gestation length are 

associated, or because both brain weight and gestation length are associated 

with body size.



A tentative model

We know brain weight is related to body size, so we need 

the β1 term in the model.

If both β2 and β3 = 0, then neither are associated with brain 

size after accounting for body size.

If β2 ≠ 0 then brain size is related to gestation length after 

accounting for body size and litter size.

If β3 ≠ 0 then brain size is related to litter size after 

accounting for body size and gestation.

μ{log(brain) | gestation, body, litter} = 

β0 + β1log(body) + β2 log(gestation) + β3 log(litter)

Shorthand: μ{log(brain) | gestation, body, litter} = log(body) + log(gestation) + log(litter)



> summary(lm(log(Brain) ~ log(Body) + log(Gestation) + log(Litter), 

data = case0902))

... 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)     0.85482    0.66167   1.292  0.19962    

log(Body)       0.57507    0.03259  17.647  < 2e-16 ***

log(Gestation)  0.41794    0.14078   2.969  0.00381 ** 

log(Litter)    -0.31007    0.11593  -2.675  0.00885 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

...

There was strong evidence that litter size was associated with brain weight after accounting for 

body weight and gestation (p-value = 0.0089).

There was strong evidence that gestation length was associated with brain weight after 

accounting for body weight and litter size (p-value = 0.0038).

Observational study

There was strong evidence that brain weight was associated with either gestation length or litter 

size, even after accounting for the effect of body weight. (not in this output!)



Strategy
Display 9.9 p. 251

A strategy for data analysis using statistical models

Explore the data. Look for initial answers
to questions and for potential models.

Formulate an inferential model

Infer the answers to the questions of in-

terest using appropriate inferential tools.

Preliminaries: Define the questions of interest. 
Review the design of the study (for thinking about
model assumptions). Correct errors in the data.

Use graphical tools; Consider
transformations; fit a tenative
model; check outliers

Confidence intervals, tests, pre-
diction intervals, calibration
intervals (as needed)

Presentation: Communicate the results
to the intended audience. 

Model

not OK

4

2

1

Word the questions of interest
in terms of model parameters. 

Check the model.

(a) If appropriate, fit a richer model; 

 (with interactions or curvature, for 

 example). (b) Examine residuals. 

(c) See if extra terms can be dropped

3

Check for non-constant vari-
ance; assess outliers. Test
whether extra terms in the rich
model can be dropped.

Model OK

Answer questions (as much as
possible in subject matter lan-
guage — not statistical lan-
guage). Make inferential
statements compatible with
study design.


