Stat 412/512

STARTING INFERENCE

Jan 16 2015

Charlotte Wickham

stat512.cwick.co.nz

Announcements

Quiz #1 Friday (Jan 23rd) next week in class. No notes, no book, you wont need a calculator.

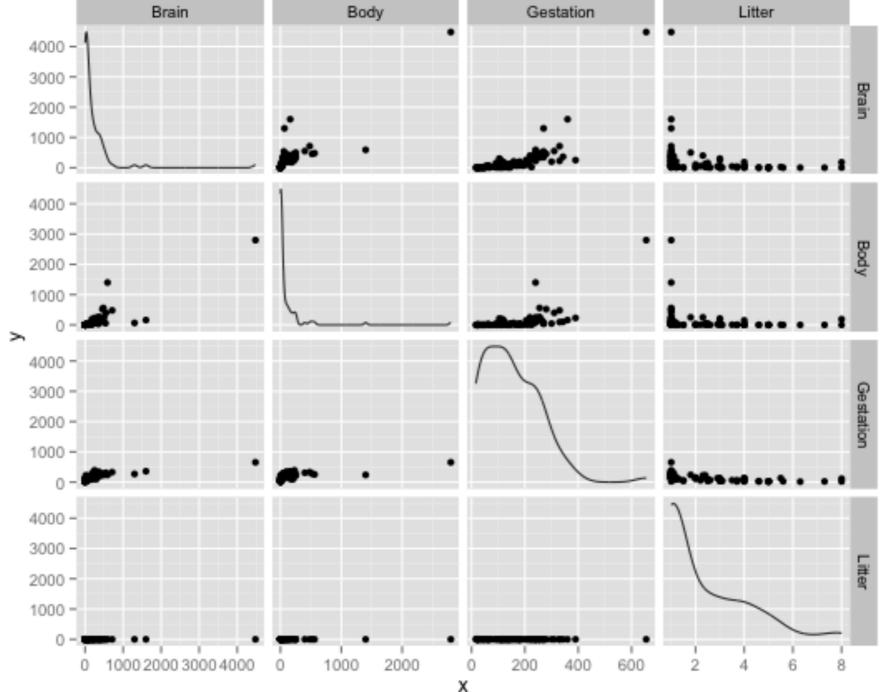
- Practice questions posted on website
- You can expect about 3 three questions of that length.

Case Study 9.2 Mammalian Brain Size

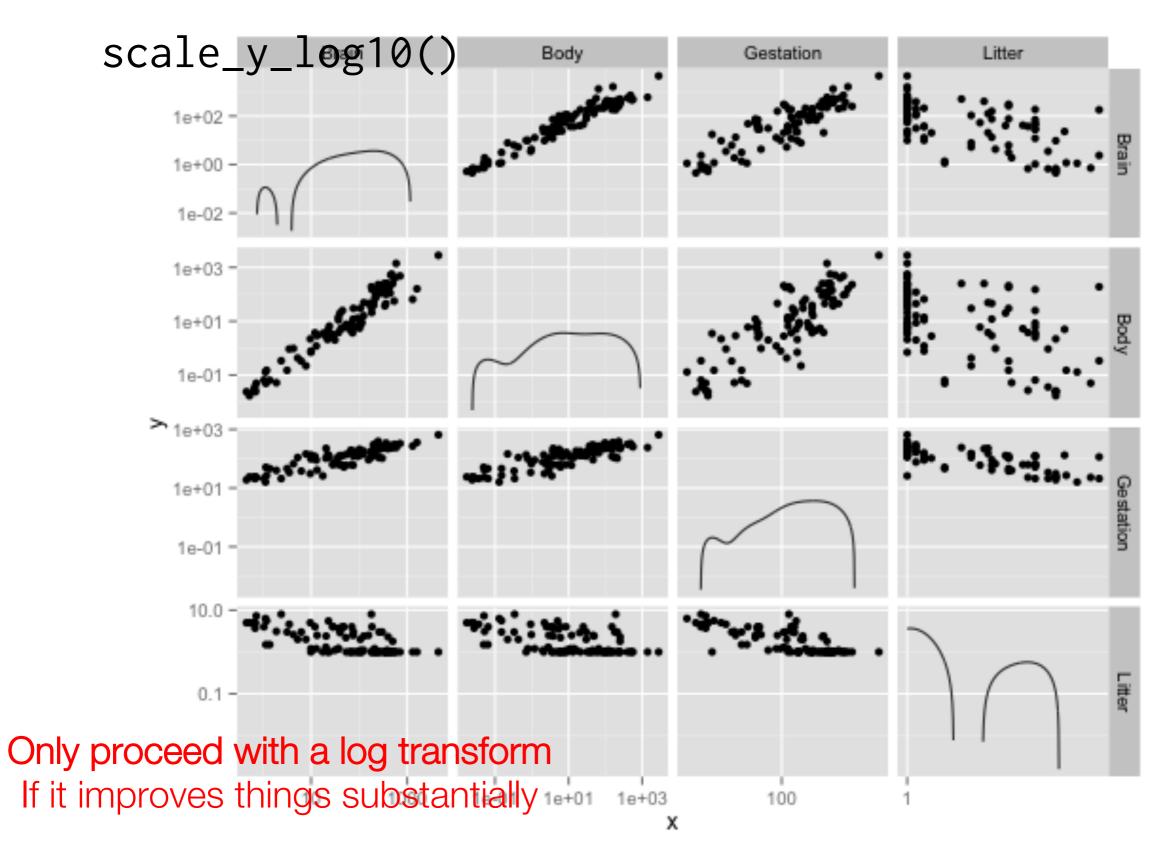
- Big brains are better, but come with costs.
- We know bigger animals would have bigger brains in general, but if we could remove that effect, what else would be related to larger brains?
- **Observed** average brain weight, body weight, gestation length and litter size for 96 mammals.
- What characteristics are associated with large brains, after accounting for body size?

Display 9.4

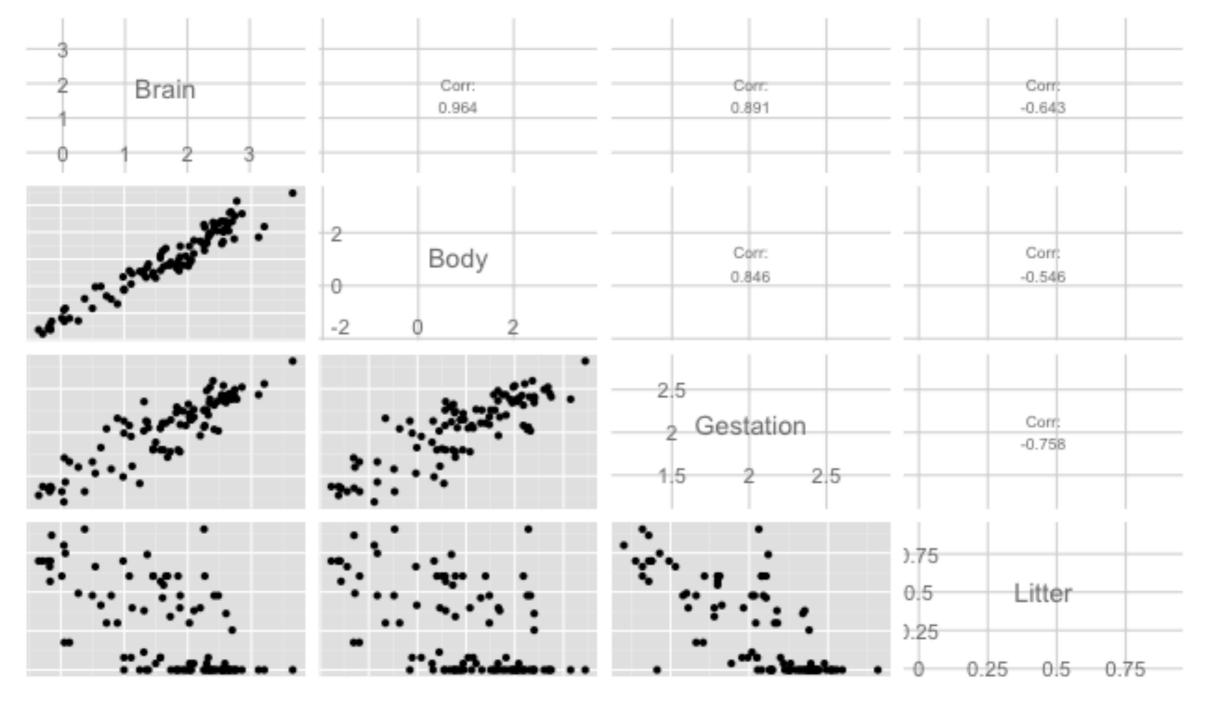
p. 239


Average values of brain weight, body weight, gestation length, and litter size in 96 species of mammal

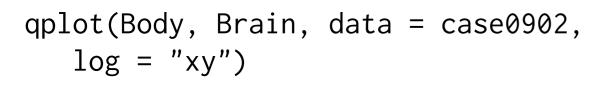
Brain Weight (grams) Body Weight (kilograms)															
			_		estation Period ((days)									
Species	+	÷	÷.	Ť	 Litter Size 										
Quokka	17.5	3.5	26	1.0	Acouchis		9.9	0.78	98	1.2					
Hedgehog	3.50	0.93	34	4.6	Chinchilla		5.25	0.43	110	2.0					
Tree shrew Elephont shrew I	3.15	0.15 0.049	46 51	3.0 1.5	Nutria Dolphin		23. 1,600.	5.0 160.	132 360	5.5 1.0					
Elephant shrew I Elephant shrew II	1.37	0.064	46	1.5	Porpoise		537.	56.	270	1.0					
Lemur	22.	2.1	135	1.0	Dog		70.2	8.5	63	4.0					
Slow loris	12.8	1.2	90	1.2	Red fox		48.	6.0	52	4.0					
Bush baby	9.9	0.7	135	1.0	Gray fox		37.3	3.8	63	3.7					
Howler monkey	54.	7.7	139	1.0	Bat-eared fox		28.5	3.2	65	4.0					
Ring-tail monkey	73.	3.7	180	1.0	Grizzly bear		400.	250.	219	2.3					
Spider monkey I	114.	9.1	140	1.0	Beaked whale		500.	250.	240	1.8					
Spider monkey II	109.	7.7	140	1.0	Raccoon		41.6	5.3	63	3.5					
Gentle lemur	7.8	0.22	145	2.0	Kinkajou										
Rhesus monkey I Rhesus monkey II	84.6 107.	6.0 8.7	175 165	1.0	Badger Domestic ca	hea	ad(ca	ASP0	902	2)					
Rhesus monkey II Hamadryas baboon	183.	21.	180	1.1 1.0	Lynx	nee		1500	/ 502	-)					
Western baboon	179.	32.	180	1.0	Leopard				C	Snea	ries	Brain	Rody	Gestation	litter
Vervet guenon	67.	4.6	195	1.0	Lion				~	per		Diam	Douy	0050001011	
Leaf monkey	65.5	5.8	168	1.0	Tiger	1				O_{110}	hkka	17.50	3 500	26	1.0
White-handed gibbon	102.	5.5	210	1.0	Fur seal	I				Qui	JNNA	17.50	5.500	20	1.0
Orangutan	343.	37.	270	1.0	Sea lion	2			Цc	adaa	ehog	3 50	0.930	34	4.6
Chimpanzee	360.	45.	230	1.0	Harp seal	Ζ			110	zuge	ling	5.50	0.950	J4	4.0
Gorilla	406.	140.	265	1.0	Weddell sea	3		т	roc	n ch	nrew	2 15	0.150	46	3.0
Human being	1,300.	65.	270 120	1.0	African Eleg	5		1	166	5 21	II EW	5.15	0.150	40	5.0
Long-nosed armadillo Aardvark	12. 9.6	3.7	31	4.0 5.0	Hyrax Horse	Λ		han	+ /	hn	SUU T	1 1 /	0 010	51	1 5
Jack rabbit	13.3	2.9	41	2.5	Tapir	4	creh	Лаг			SM T	1.14	0.049	51	1.5
Tree squirrel	6.23	0.33	38	3.0	Wild boar		410-0-		1.00						
Flying squirrel	1.89	0.052	40	3.1	Domestic pig		180.	190.	115	8.0					
Canadian beaver	40.	20.	128	2.9	Hippopotamus		590.	1,400.	240	1.0					
Beaver	45.	25.	128	4.0	Pygmy hippope	otamus	260.	150.	205	1.0					
Deer mouse I	0.68	0.027	23	3.7	Llama		225.	93.	330	1.0					
Deer mouse II	0.63	0.026	23	5.0	Vicuna		198.	45.	300	1.1					
Deer mouse III	0.52	0.017	24	5.0	Barking deer		124.	16.	183	1.1					
Rat II	2.38	0.34	21	8.0	Caribou		288.	110.	225	1.0					
House mouse	0.45	0.024	19	5.0	Eland		480.	560.	255	1.0					
Hopping mouse	1.18	0.15	27	5.6	Yak		334.	250.	255	1.0					
Porcupine I		11.		1.2	Cattle		456.		280	1.0					
					the second se										
	-0.0	2.0	104		- rouneare Boar		100.		1.51						
House mouse Hopping mouse	0.45	0.024 0.15	19	5.0 5.6	Eland Yak	p	480. 334.	560.	255 255	1.0 1.0					

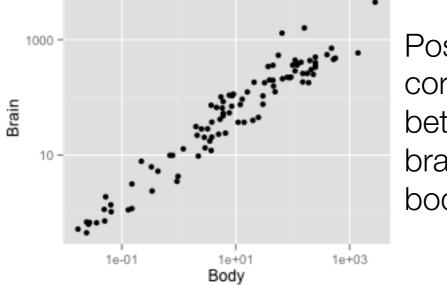

Scatterplot matrix all pairwise scatterplots

plotmatrix(case0902[, -1])

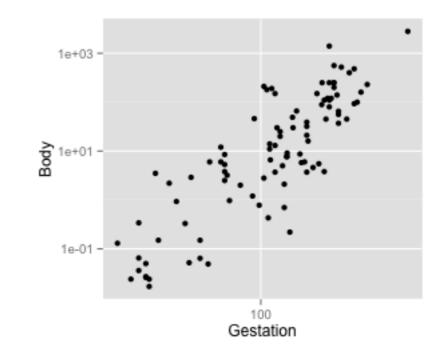

not the first column

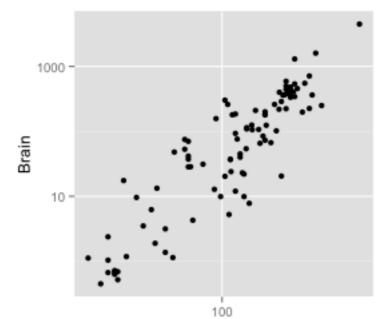
plotmatrix(case0902[, -1]) + scale_x_log10() +




library(GGally) # to log transform need to do each column library(plyr) case0902log <- colwise(log10, is.numeric)(case0902) case0902log\$Species <- case0902\$Species ggpairs(case0902log,columns = c(1:4))</pre>

better version


Or explore "by hand"



qplot(Gestation, Brain, data = case0902 ,

Positive correlation between brain weight and body weight But maybe that is because there is a relationship between body weight and gestation length.

Similarly for litter size

Gestation

 $\log = "xy"$)

Positive correlation between Gestation length and brain weight

Your turn

 μ {log(brain) | gestation, body, litter} =

 $\beta_0 + \beta_1 \log(body) + \beta_2 \log(gestation)$

What is the effect of log(gestation)?

How would we interpret β₂?

Interpretation depends on what else is in the model

The interpretation of β_1 is different in the two models:

- **1:** μ {brain | gestation} = $\beta_0 + \beta_1$ gestation
- **2:** μ {brain | gestation, body} = $\beta_0 + \beta_1$ gestation + β_2 body

1: β_1 is the rate of change of brain weight with changes in gestation length, over all mammals.

2: β_1 is the rate of change of brain weight with changes in gestation length, holding body size fixed (or within mammals of the same body size).

 β_1 in **1** could be non-zero, because brain weight and gestation length are associated, or because both brain weight and gestation length are associated with body size.

A tentative model

 μ {log(brain) | gestation, body, litter} =

 $\beta_0 + \beta_1 \log(body) + \beta_2 \log(gestation) + \beta_3 \log(litter)$

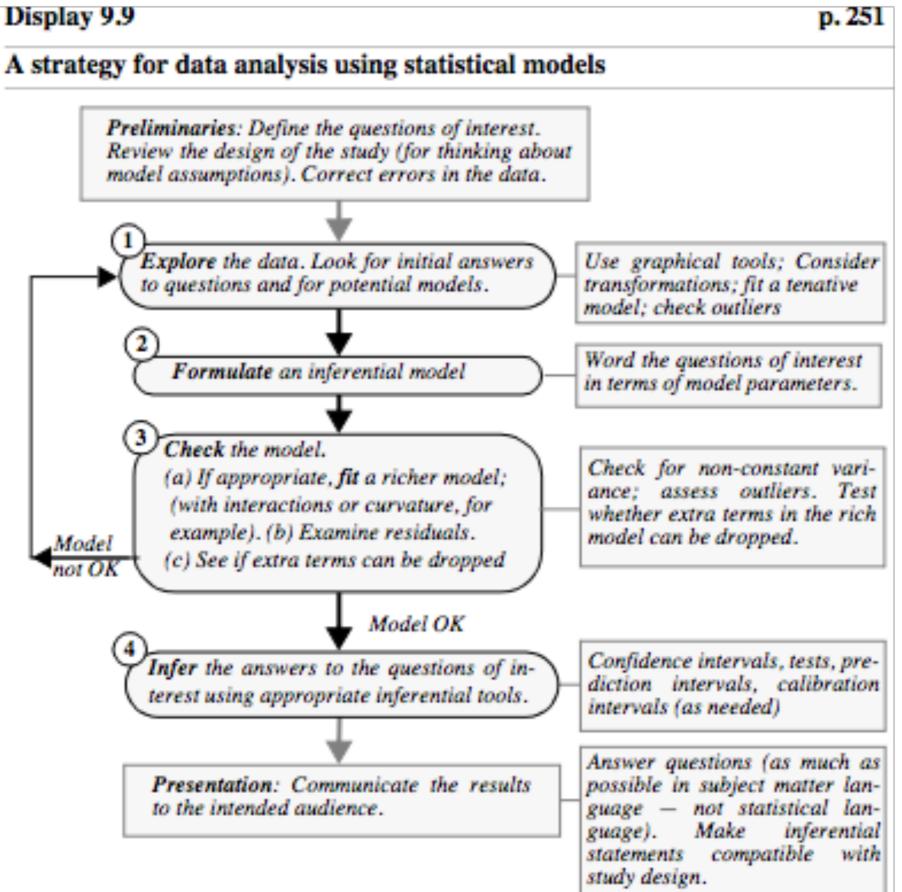
We know brain weight is related to body size, so we need the β_1 term in the model.

If both β_2 and $\beta_3 = 0$, then neither are associated with brain size after accounting for body size.

If $\beta_2 \neq 0$ then brain size is related to gestation length after accounting for body size and litter size.

If $\beta_3 \neq 0$ then brain size is related to litter size after accounting for body size and gestation.

Shorthand: μ {log(brain) | gestation, body, litter} = log(body) + log(gestation) + log(litter)


There was strong evidence that brain weight was associated with either gestation length or litter size, even after accounting for the effect of body weight. (not in this output!)

There was strong evidence that litter size was associated with brain weight after accounting for body weight and gestation (p-value = 0.0089).

There was strong evidence that gestation length was associated with brain weight after accounting for body weight and litter size (p-value = 0.0038).

Observational study

Strategy

The first thing you need to consider, is:

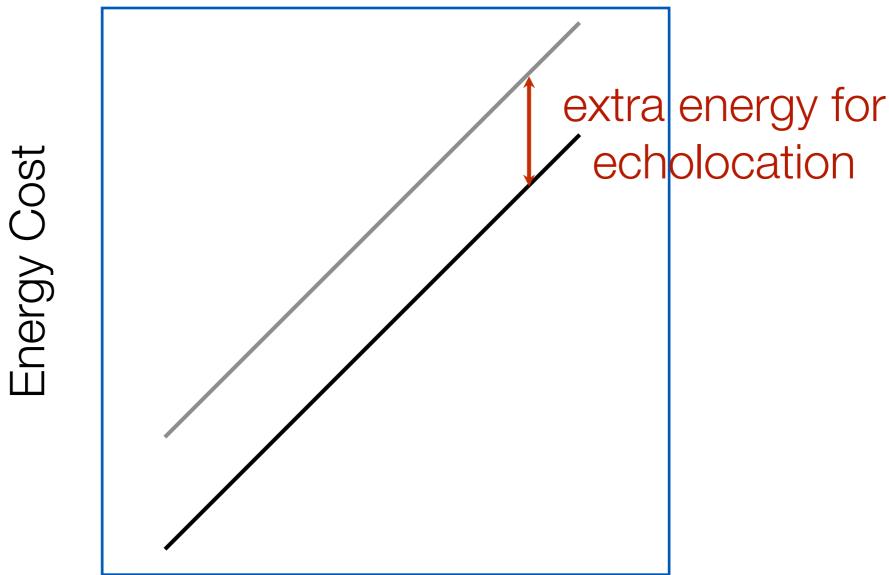
Will my regression model answer my questions of interest? Steps 1 & 2

The second:

Is my regression model an appropriate model for my data? Steps 1 & 3

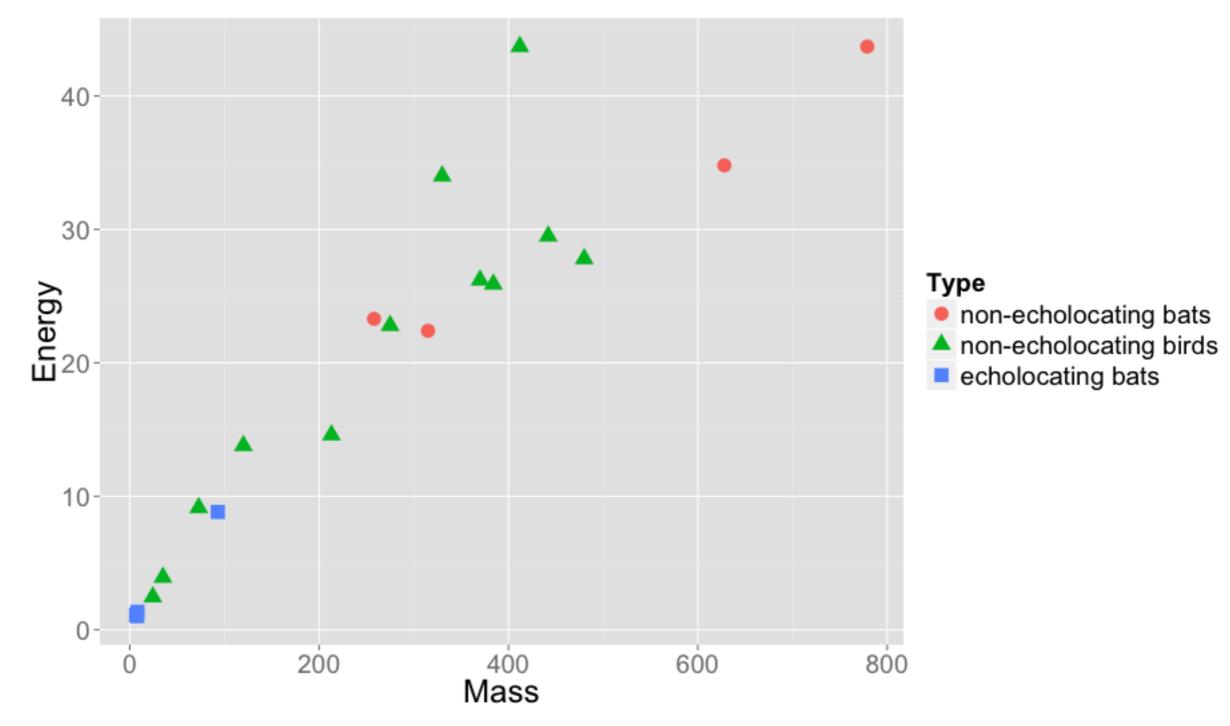
Case Study 10.2 Echolocation

Some bats use echolocation to orient themselves.

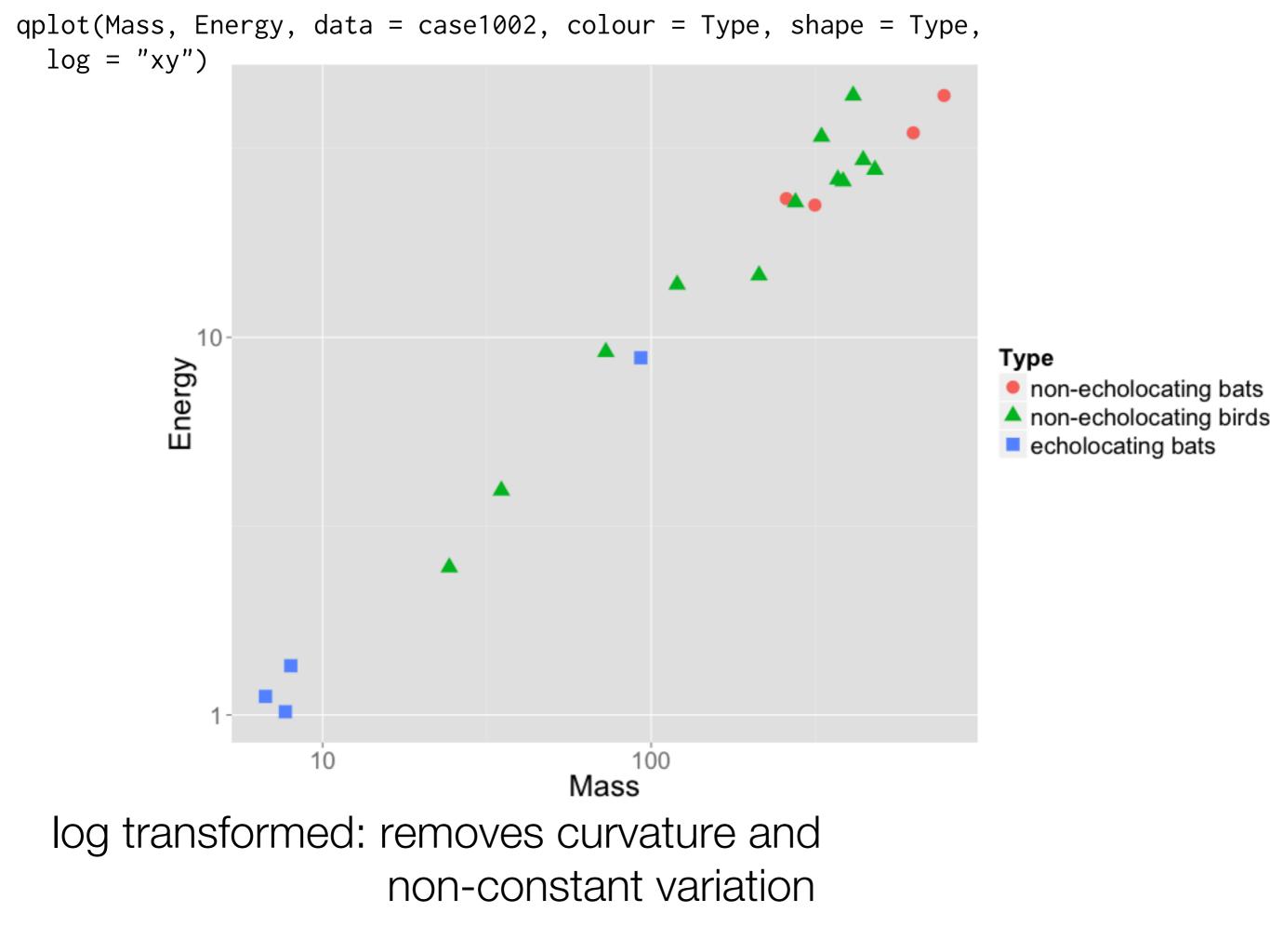

Echolocation is energy expensive but maybe some bats have evolved to do it efficiently.

Zoologists wonder whether the energy costs of echolocation during flight are the sum of flights costs plus echolocation.

Cost during flight = cost of flight + cost of stationary echolocation


Complication: the energy costs of flight depend on how heavy you are Heavy bats expend more energy flying.

But, for bats of the same body weight, echolocating bats should expend a constant amount of energy more than non-echolocating bats.


Body Weight

qplot(Mass, Energy, data = case1002, colour = Type, shape = Type)

Mass and inflight energy from 20 energy studies

birds help to define cost to weight relationship

A tentative model

µ{ log Energy | log Mass, Type}

- = log Mass + TYPE shorthand
- = $\beta_0 + \beta_1 \log Mass + \beta_2 bird + \beta_3 ebat$

where,

ebat is an indicator for echolocating bat,

bird is an indicator for bird

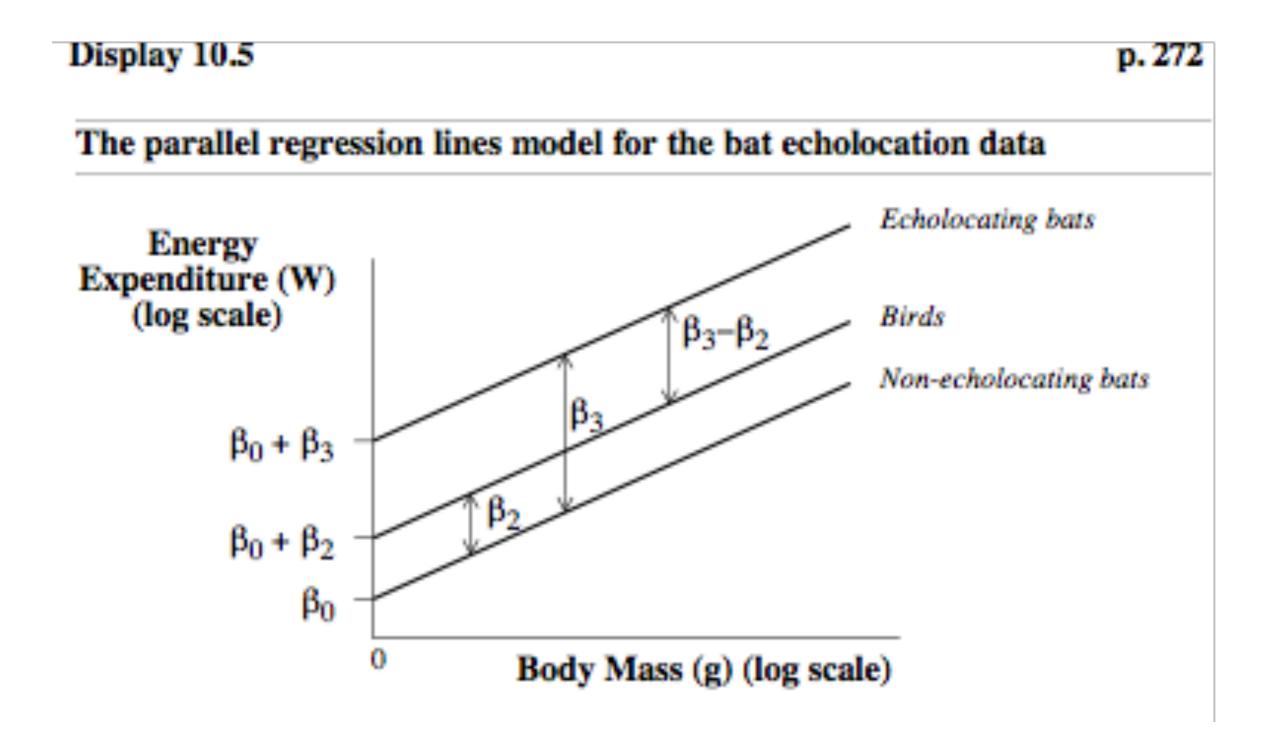
The easiest way to understand a model with indicator variables in it, is to write out the model within each category,

for non-echolocating bats

 μ { log Energy | log Mass, ebat = 0, bird = 0} =

$$= \beta_0 + \beta_1 \log Mass$$

for echolocating bats


 μ { log Energy | log Mass, ebat = 1, bird = 0} =

= $(\beta_0 + \beta_3) + \beta_1 \log Mass$

for birds:

 $\mu \{ \text{ log Energy} \mid \text{log Mass, ebat} = 0, \text{ bird} = 1 \} =$ $= (\beta_0 + \beta_2) + \beta_1 \text{ log Mass}$

A parallel lines model with three categories

Does the model answer the question of interest?

Yes,

if $\beta_3 > 0$ echolocation while flying is associated with an extra β_3 in mean log energy.

if $\beta_3 = 0$ echolocation while flying is not associated with any extra mean log energy. (The bats have evolved to be efficient).

We can answer our question of interest with a test with the null, $\beta_3 = 0$.

Inference on a single parameter, today

Is the model appropriate for our data?

You might ask whether a separate lines model is more appropriate.

µ{ log Energy |log Mass, Type}

- = log Mass + TYPE + log Mass × TYPE
- = $\beta_0 + \beta_1 \log Mass + \beta_2 bird + \beta_3 ebat +$

 $\beta_4 ebat \times log Mass + \beta_5 bird \times log Mass$

We could test the null hypothesis $\beta_4 = \beta_5 = 0$, the relationship between body mass and energy costs doesn't depend on type

Inference on more than one parameter, next week You should also ask if the assumptions of multiple linear regression are appropriate (Chapter 11).

Estimation of parameters

Just like in simple linear regression, the parameters are estimated by minimizing the sum of the squared residuals, a.k.a **least** squares

The formulas for the estimates are best represented using matrix algebra (see ex 10.20 & 10.21).

Notation: $\hat{\beta}_j$ is the least squares estimate of β_j , the j'th coefficient in the model.

Estimate of σ

We assume constant spread about the regression line, σ and estimate σ , with

$$\hat{\sigma} = \sqrt{\frac{\text{Sum of squared residuals}}{\text{Degrees of freedom}}}}$$

Degrees of freedom = n - # of β

In ecolocation study: n = 20, parallel lines model has 4 β 's, $\beta_0 + \beta_1 \log Mass + \beta_2 ebat + \beta_3 bird$

d.f. = 20 - 4 = 16

Fact

Assuming the response is Normally distributed with constant spread, σ , at each combination of the explanatory variables,

t-ratio =
$$\frac{\hat{\beta_j} - \beta_j}{SE_{\hat{\beta_j}}}$$

has a Student's *t*-distribution with degrees of freedom equal to the degrees of freedom associated with $\hat{\sigma}$.

There are formulas for SE($\hat{\beta}_i$), the standard error of our estimate.