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Announcements

Quiz #1 Friday (Jan 23rd) next week in 
class. No notes, no book, you wont 
need a calculator.
Practice questions posted on website
You can expect about 3 three 
questions of that length.



Case Study 9.2 Mammalian Brain Size 

Big brains are better, but come with costs.
We know bigger animals would have bigger 
brains in general, but if we could remove that 
effect, what else would be related to larger 
brains?
Observed average brain weight, body weight, 
gestation length and litter size for 96 mammals.
What characteristics are associated with large 
brains, after accounting for body size?



head(case0902) 
            Species Brain  Body Gestation Litter 
1            Quokka 17.50 3.500        26    1.0 
2          Hedgehog  3.50 0.930        34    4.6 
3        Tree shrew  3.15 0.150        46    3.0 
4  Elephant shrew I  1.14 0.049        51    1.5 



Scatterplot matrix
all pairwise scatterplots

plotmatrix(case0902[, -1]) 
not the first column



plotmatrix(case0902[, -1]) +  

    scale_x_log10() +  

    scale_y_log10() 

 

Only proceed with a log transform
If it improves things substantially



library(GGally) 
# to log transform need to do each column 
library(plyr) 
case0902log <- colwise(log10, is.numeric)(case0902) 
case0902log$Species <- case0902$Species 
ggpairs(case0902log,columns = c(1:4)) 

better version



Or explore “by hand”

qplot(Gestation, Body, 
    data = case0902, 
    log = "xy") 
 

Positive 
correlation 
between 
brain weight and 
body weight

Positive correlation 
between 
Gestation length 
and brain weight

But maybe that is because 
there is a relationship between 

body weight and gestation 
length.

qplot(Body, Brain, data = case0902,  
   log = "xy") 

qplot( Gestation, Brain, data = case0902 , 
   log = "xy") 

Similarly for litter size



Your turn

What is the effect of log(gestation)?



How would we interpret β2?

 μ{log(brain) | gestation, body, litter} = 
                      β0 + β1log(body) + β2 log(gestation) 

Each one unit increase  in (log(gestation)), 
is associated with β2  unit increase in log(brain size), holding

log(body size) constant. 

β2

in general if an explanatory only occurs once in the regression equation, 
it’s effect is the parameter in front of it.



Interpretation depends on what else is in the model
The interpretation of β1 is different in the two 
models:
1:       μ{brain | gestation}           = β0 + β1gestation

2:       μ{brain | gestation, body} = β0 + β1gestation + β2body

1: β1 is the rate of change of brain weight with 
changes in gestation length, over all mammals.
2: β1 is the rate of change of brain weight with 
changes in gestation length, holding body size fixed 
(or within mammals of the same body size).

β1 in 1 could be non-zero, because brain weight and gestation length are 
associated, or because both brain weight and gestation length are associated 
with body size.



A tentative model

We know brain weight is related to body size, so we need 
the β1 term in the model.
If both β2 and β3 = 0, then neither are associated with 
brain size after accounting for body size.
If β2 ≠ 0 then brain size is related to gestation length after 
accounting for body size and litter size.
If β3 ≠ 0 then brain size is related to litter size after 
accounting for body size and gestation.

 μ{log(brain) | gestation, body, litter} = 
                      β0 + β1log(body) + β2 log(gestation) + β3 log(litter)

Shorthand: μ{log(brain) | gestation, body, litter} = log(body) + log(gestation) + log(litter)



> summary(lm(log(Brain) ~ log(Body) + log(Gestation) + log(Litter),  
         data = case0902)) 
 
...  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     0.85482    0.66167   1.292  0.19962     
log(Body)       0.57507    0.03259  17.647  < 2e-16 *** 
log(Gestation)  0.41794    0.14078   2.969  0.00381 **  
log(Litter)    -0.31007    0.11593  -2.675  0.00885 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
... 

There was strong evidence that litter size was associated with brain weight after accounting for 
body weight and gestation (p-value = 0.0089).

There was strong evidence that gestation length was associated with brain weight after 
accounting for body weight and litter size (p-value = 0.0038).

Observational study

There was strong evidence that brain weight was associated with either gestation length or litter 
size, even after accounting for the effect of body weight. (not in this output!)



Strategy



The first thing you need to consider, is: 

Will my regression model answer my 
questions of interest?

The second: 
Is my regression model an 
appropriate model for my data?

Steps 1 & 2

Steps 1 & 3



Case Study 10.2 Echolocation
Some bats use echolocation to orient 
themselves.
Echolocation is energy expensive but maybe 
some bats have evolved to do it efficiently.
Zoologists wonder whether the energy costs of 
echolocation during flight are the sum of flights 
costs plus echolocation.

Cost during flight = cost of flight + cost of stationary echolocation

Complication: the energy costs of flight depend 
on how heavy you are



Heavy bats expend more energy flying.
But, for bats of the same body weight, 
echolocating bats should expend a constant 
amount of energy more than non-echolocating 
bats.

Body Weight

En
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gy
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t

extra energy for 
echolocation



Mass and inflight energy from 20 energy studies
birds help to define cost to weight relationship

qplot(Mass, Energy, data = case1002, colour = Type, shape = Type) 



log transformed: removes curvature and 
                           non-constant variation

qplot(Mass, Energy, data = case1002, colour = Type, shape = Type,  
  log = "xy") 



A tentative model

μ{ log Energy | log Mass, Type} 
       =   log Mass + TYPE  
       =   β0 + β1 log Mass + β2 bird + β3 ebat
where,
ebat is an indicator for echolocating bat, 
bird is an indicator for bird

shorthand



The easiest way to understand a model 
with indicator variables in it, is to write 
out the model within each category,
for non-echolocating bats
μ{ log Energy | log Mass, ebat = 0, bird = 0} = 
            =   β0           + β1 log Mass 
for echolocating bats
μ{ log Energy | log Mass, ebat = 1, bird = 0} =
            =  ( β0 + β3 ) + β1 log Mass

for birds:
μ{ log Energy | log Mass, ebat = 0, bird = 1} = 
            =  ( β0 + β2 ) + β1 log Mass 



A parallel lines model with three categories



Does the model answer the question of interest?

Yes, 
if β3 > 0 echolocation while flying is 
associated with an extra β3 in mean log 
energy.
if β3 = 0 echolocation while flying is not 
associated with any extra mean log energy. 
(The bats have evolved to be efficient).

We can answer our question of interest with 
a test with the null, β3 = 0.

Inference on a single parameter, today



Is the model appropriate for our data?
You might ask whether a separate lines model is 
more appropriate.
μ{ log Energy |log Mass, Type} 
       =   log Mass + TYPE +  log Mass × TYPE
       =   β0 + β1 log Mass + β2 bird + β3 ebat +

β4 ebat × log Mass + β5 bird × log Mass

You should also ask if the assumptions of multiple linear regression 
are appropriate (Chapter 11).

We could test the null hypothesis β4 = β5 = 0, the relationship 
between body mass and energy costs doesn't depend on type

Inference on more than one parameter, next week



Estimation of parameters
Just like in simple linear regression, the 
parameters are estimated by minimizing the 
sum of the squared residuals, a.k.a least 
squares
The formulas for the estimates are best 
represented using matrix algebra (see ex 10.20 & 

10.21). 
Notation:  β̂j is the least squares estimate of 
βj, the j'th coefficient in the model.



Estimate of σ
We assume constant spread about the regression line, σ
and estimate σ, with

Degrees of freedom = n - # of β
In ecolocation study: n = 20, parallel lines model has 4 β's, 
        β0 + β1 log Mass + β2 ebat + β3 bird

d.f. = 20 - 4 = 16



Fact 
Assuming the response is Normally distributed with constant 
spread, σ, at each combination of the explanatory variables,


There are formulas for SE( β̂i ), the standard error of our estimate.

has a Student's t-distribution with degrees of 
freedom equal to the degrees of freedom 

associated with σ̂. 

t-ratio = 


