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Announcement

DA#1 posted

Don’t need to do regression diagnostics (i.e. 

residual plots)

Read report description even if it seems familiar 

from ST511

Submit a report that contains no R code or raw R 

output.  Also submit an R code file.



Two models

Full model:

μ{ log Energy | log Mass, Type} 

=   β0 + β1 log Mass + β2 bird + β3 ebat

Reduced model:

μ{ log Energy | log Mass, Type}  

=   β0 + β1 log Mass 

If the reduced model is the truth:

then β2 and β3 should be estimated close to zero

both models should fit about the same

the residuals in both models should be about the same size



> anova(fit_eq, fit_bats)

Analysis of Variance Table

Model 1: log(Energy) ~ log(Mass)

Model 2: log(Energy) ~ log(Mass) + Type

Res.Df     RSS Df Sum of Sq      F Pr(>F)

1     18 0.58289                           

2     16 0.55332  2  0.029574 0.4276 0.6593

There is no evidence that the mean log energy differs for birds, 

echolocating bats and non-echolocating bats after accounting 

for body mass (extra sum of squares F-test, p-value = 0.66).



Another example

We relied on a parallel lines regression to answer our 

question of interest, we might also want to test this is 

reasonable.

Fit separate lines model (check assumptions look good)

Test whether interaction terms can be dropped.
Full model:

μ{ log Energy | log Mass, Type} 

=   β0 + β1 log Mass + β2 bird + β3 ebat +

β4 log Mass x bird + β5 log Mass x ebat

Reduced model:

μ{ log Energy | log Mass, Type} 

=   β0 + β1 log Mass + β2 bird + β3 ebat

6 parameters

4 parameters



> anova(fit_bats, fit_sep)

Analysis of Variance Table

Model 1: log(Energy) ~ log(Mass) + Type

Model 2: log(Energy) ~ log(Mass) + Type + 

log(Mass):Type

Res.Df     RSS Df Sum of Sq      F Pr(>F)

1     16 0.55332                           

2     14 0.50487  2   0.04845 0.6718 0.5265

There is no evidence that the relationship between mean log 

energy and log body mass differs for birds, echolocating bats 

and non-echolocating bats (extra sum of squares F-test, p-

value = 0.56).

Your Turn: Write a summary of this result.

There is no evidence,

the effect of log mass on mean log energy depends on animal 

type.



Extra SS F-test

Null hypothesis: 

The parameters in the full model are 

constrained. 

Reduced model is correct.

Alternative hypothesis: 

The parameters in the full model are 

unconstrained.

A small p-value gives us evidence against the reduced model.



Overall regression F-test
Null hypothesis: 

μ{ Y | X } =   β0

Alternative hypothesis: 

The parameters in the full model are 

unconstrained.

Null: μ{ log Energy | log Mass, Type}  =   β0

Alternative: μ{ log Energy | log Mass, Type} 

=   β0 + β1 log Mass + β2 bird + β3 ebat

For the bats:

constant mean

If we reject this null, then not all parameters are zero, (this is not the same as all 

parameters are non-zero)



> summary(fit_bats)

Call:

lm(formula = log(Energy) ~ log(Mass) + Type, data = case1002)

Residuals:

Min       1Q   Median       3Q      Max 

-0.23224 -0.12199 -0.03637  0.12574  0.34457 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)                -1.57636    0.28724  -5.488 4.96e-05 ***

log(Mass)                   0.81496    0.04454  18.297 3.76e-12 ***

Typenon-echolocating birds  0.10226    0.11418   0.896    0.384    

Typeecholocating bats       0.07866    0.20268   0.388    0.703    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.186 on 16 degrees of freedom

Multiple R-squared: 0.9815, Adjusted R-squared: 0.9781 

F-statistic: 283.6 on 3 and 16 DF,  p-value: 4.464e-14 

A extra sum of squares F-test, with the reduced model:

μ{ log Energy | log Mass, Type}  = β0

I.e. Null: β1 = β2 = β3 = 0



Meadowfoam case study

Intensity could be treated as 
continuous variable:

μ{ flowers | Intensity, early} =  

β0 + β1early + β2Intensity 

Or as a categorical variable:

μ{ flowers | Intensity, early} =  

β0 + β1early  + β2L300 + β3L450 +

+ β4L600+ β5L750 + β6L900



μ{ flowers | Intensity, early} =  

β0 + β1early + β2Intensity

μ{ flowers | Intensity, early} =  

β0 + β1early + β2L300 + β3L450 +

+ β4L600+ β5L750 + β6L900
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3 parameters

7 parameters

mean number of 

flowers is a straight 

line function of 

Intensity

mean number of 

flowers is possible 

different for each 

Intensity



In general

A model with a continuous variable is 

a constrained case of a model with the 

same variable represented as 

categories.

An extra sum of squares F-test can be 

used to compare them.



> fit_cont <- lm(Flowers ~ Intens + Time, 

data = case0901)

> fit_ind <- lm(Flowers ~ factor(Intens) + Time, 

data = case0901)

> anova(fit_cont, fit_ind)

Analysis of Variance Table

Model 1: Flowers ~ Intens + Time

Model 2: Flowers ~ factor(Intens) + Time

Res.Df    RSS Df Sum of Sq      F Pr(>F)

1     21 871.24                           

2     17 767.47  4    103.76 0.5746 0.6848

Your Turn: Write a summary of this result.



HW#2

μ{ flowers | Intensity, early} =  

β0 + β1early + β2L300 + β3L450 + β4L600+ β5L750 + β6L900 + 

β7L300xearly + β8L450xearly + β9L600xearly+ β10L750xearly + β11L900xearly
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12 parameters

mean number of 

flowers is possible 

different for each 

Intensity and timing 

combination



The assumptions for the F-test, are that:

the full model is appropriate

and the usual regression assumptions:
• constant spread

• the response is normally distributed around the mean

• observations are independent

Before doing the F-test you need to check these!

If the full model is inappropriate:
the response is non-linear

you left out important terms, etc

the F-test tells you nothing.

A small p-value gives us evidence against the reduced model, 

assuming the full model is true.



R2

R-squared tells you the proportion of variance in 

the response explained by the explanatories.
μ{ flowers | Intensity, early} =  intensity> summary(fit_intensonly)

....

Residual standard error: 8.94 on 22 degrees of freedom

Multiple R-squared: 0.5947, Adjusted R-squared: 0.5763 

F-statistic: 32.28 on 1 and 22 DF,  p-value: 1.03e-05 

The linear relationship with intensity explains 59% of the 

variability in the mean number of flowers per stem.

μ{ flowers | Intensity, early} =  intensity + TIME> summary(fit_cont)

...

Residual standard error: 6.441 on 21 degrees of freedom

Multiple R-squared: 0.7992, Adjusted R-squared:  0.78 

F-statistic: 41.78 on 2 and 21 DF,  p-value: 4.786e-08 

The additive effect of early explains an additional 20% of the 

variability in the mean number of flowers per stem.



But R2 always gets bigger

The more variables you add to the 

model, the bigger R2 gets.

If you add as many variables as 

observations, then R2 = 1.

Adjusted R-squared, tries to adjust for 

this.  If the adjusted R2 increases then the 

additional variable explained more 

variance than expected by chance.



The principle of parsimony

The simplest explanation is the best.

In statistics, translates to:

If two models fit the data equally well, 

use the simpler one.

In practice, leads to an acceptance of 

the null model in an F-test. (!)

not everyone agrees with this


