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Another note on indicator variables

You may have noticed it's difficult to 

write summaries about slopes relative 

to a baseline category.

A different parameterization, has an 

indicator variable for every category, 

but you have to drop some terms

different parameterization: same model, but the parameters mean different things



> summary(lm(Flowers ~ Intens + Time - 1, data = case0901))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

Intens    -0.040471   0.005132  -7.886 1.04e-07 ***

TimeLate  71.305834   3.273772  21.781 6.77e-16 ***

TimeEarly 83.464167   3.273772  25.495  < 2e-16 ***

> summary(lm(Flowers ~ Intens + Time, data = case0901))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 71.305834   3.273772  21.781 6.77e-16 ***

Intens      -0.040471   0.005132  -7.886 1.04e-07 ***

TimeEarly   12.158333   2.629557   4.624 0.000146 ***

The models are equivalent, but we move from parameters that 

describe intercepts relative to the baseline, to absolute 

intercepts for each category.

drop the intercept

μ{ flowers | Intensity, early} =  

β0early + β1 late + β2Intensity 

μ{ flowers | Intensity, early} =  

β0 + β1early + β2Intensity 



> summary(lm(Flowers ~ Time + Intens + Intens:Time, data = case0901))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)      71.623333   4.343305  16.491 4.14e-13 ***

TimeEarly        11.523333   6.142361   1.876   0.0753 .  

Intens           -0.041076   0.007435  -5.525 2.08e-05 ***

TimeEarly:Intens  0.001210   0.010515   0.115   0.9096    

---

> summary(lm(Flowers ~ Time - 1 + Intens:Time, data = case0901))

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

TimeLate         71.623333   4.343305  16.491 4.14e-13 ***

TimeEarly        83.146667   4.343305  19.144 2.49e-14 ***

TimeLate:Intens  -0.041076   0.007435  -5.525 2.08e-05 ***

TimeEarly:Intens -0.039867   0.007435  -5.362 3.01e-05 ***
The models are equivalent, but we move from parameters that 

describe intercepts and slopes relative to the baseline, to 

absolute intercepts and slopes for each category.

μ{ flowers | Intensity, early} =   β0early + β1late + 

β2early x Intensity + β3late x Intensity

μ{ flowers | Intensity, early} =   β0 + β1early + 

β2 Intensity + β3early x Intensity



It's a lot easier to picture the model for each group 

with this parameterization, but we lose the easy 

access to p-values that tell us whether there is 

evidence the groups have different lines.

Convenience is generally the driver of a particular 

parameterization. 

And often multiple parameterizations of the same 

model will be used to answer all the questions on 

interest.
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A strategy for data analysis using statistical models

Explore the data. Look for initial answers
to questions and for potential models.

Formulate an inferential model

Infer the answers to the questions of in-

terest using appropriate inferential tools.

Preliminaries: Define the questions of interest. 
Review the design of the study (for thinking about
model assumptions). Correct errors in the data.

Use graphical tools; Consider
transformations; fit a tenative
model; check outliers

Confidence intervals, tests, pre-
diction intervals, calibration
intervals (as needed)

Presentation: Communicate the results
to the intended audience. 

Model

not OK
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Word the questions of interest
in terms of model parameters. 

Check the model.

(a) If appropriate, fit a richer model; 

 (with interactions or curvature, for 

 example). (b) Examine residuals. 

(c) See if extra terms can be dropped
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Check for non-constant vari-
ance; assess outliers. Test
whether extra terms in the rich
model can be dropped.

Model OK

Answer questions (as much as
possible in subject matter lan-
guage — not statistical lan-
guage). Make inferential
statements compatible with
study design.



Model Checking and Refinement

The best way to check the model is with 

residual plots, but you to have a model to 

fit.

Generally, you want to start with a model 

that:

• can answer your questions of interest

• includes confounding variables

• captures important relationships

and be willing to make adjustments as you go



Case 11.01 Alcohol Metabolism

Women get drunk quicker than men. Women also 

develop alcohol related liver disease more readily.

Theory: a particular enzyme responsible for alcohol 

metabolism in the stomach is more active in men.

"first pass metabolism" = alcohol metabolized in the 

stomach so it doesn't reach the bloodstream

To determine first pass metabolism, compare blood 

alcohol levels after drinking to after intravenous 

alcohol.

Also measure enzyme activity.



Alcohol 

Metabolism 

is greater 

for men

...but so is 

Gastric AD 

activity



18 women

15 men

some are alcoholics



Do levels of first pass metabolism 

differ between men and women?

Can the difference be explained by 

postulating that men have more 

enzyme activity in their stomachs?

Are the answers to these questions 

complicated by an alcoholism effect?

Questions of interest



Your turn

A tentative model?

μ{ First pass metabolism | gast, female, alcoholic} =  





Outliers

Least squares estimates are not robust to outliers.

Identify outliers early on, so you don't end up 

tailoring the model to to fit a few unusual 

observations.

An observation is said to be influential if the fitted 

model depends unduly on its value.

For example, removing it: changes the estimate of 

parameters greatly, changes conclusions, or 

changes which terms are included in the model.





Case influence statistics

Case influence statistics help identify 

observations that may be influential.


