Stat 412/512

Two Way Anova

Feb 6 2015

Charlotte Wickham

stat512.cwick.co.nz

Quiz #2

Study guide posted. You get two attempts, keep highest score.

Opens today at noon, closes Monday at noon, 60 minutes to complete.

Study guide is on website

Roadmap

DONE:

Understand what a multiple regression model is.

Know how to do inference on single and multiple parameters.

Some extra tools for checking models.

Our general strategy.

TO DO:

Some special cases, two way ANOVA, multi factor studies, no replication.

Model selection.

Serial correlation.

Multivariate responses.

Strategy

- 1. Explore with plots, summaries etc.
- 2. Fit a tentative model
- 3. Check residual plots for problems and outliers
- 4. Investigate influential points
- 5. Find a simple good fitting model
- 6. Answer questions of interest

Remember the Spock case study?

Do the judges all have the same population mean percent of women on their venires?

A one-way ANOVA

One response variable.

One grouping variable with many levels.

- **Null**: All the groups have the same mean response
- **Alternative**: At least one group has a different mean response
- Full model: separate means
- Reduced model: equal means

Compare with an extra sum of squares F-test

afterwards answer particular questions about the means

One way ANOVA is just a special case of multiple regression

The full and reduced models are examples of multiple regression models with a single categorical variable.

Full model: µ{ % women | Judge} = JUDGE =

 $\beta_0 + \beta_1 A + \beta_2 B + \beta_3 C + \beta_4 D + \beta_5 E + \beta_6 F$

where A, B, C, D, E and F are indicator variables for each judge. (Spock is the baseline)

Reduced model: μ { % women | Judge} = β_0

Two way ANOVA

One response variable.

Two grouping variables with many levels.

A multiple regression models with two categorical variables.

categorical

µ{ Response | Factor1, Factor2}

Case1302: Pygmalion Effect

Pygmalion Effect = High expectations translate to better performance

10 army companies each with 3 platoons,

one platoon randomly picked for pygmalion treatment,

platoon leader is told his platoon has scored highly on tests that indicate they are superior.

After basic training platoons are given a Practical Specialty Test.

Response = "average score on PST of platoon"

Another way to think of the data, is as a **two-**

Display 13.3

J columns

p.378

Average scores of soldiers on the Practical Specialty Test, for platoons given the Pygmalion treatment and for control platoons

- Columns = the other factor
- Cell = Response(s)
- Balance the data is balanced if each cell has the same number of observations.

this data is unbalanced

I x J cells

Your turn

What are five possible models? Grevery continution (in shorthand) u{ Score | Company, Treatment -

 $\widehat{(1)}$

(2)

(3)

(4)

 ∞

~

 \sim_{ζ}

N A

" = COMPANY + TREATMENT + COMPANY × TREATMENT

- " = COMPANY + TREATMENT
- " = COMPANY
- " = TREAT
- " = constant

The additive model

µ{ Response | Factor1, Factor2} = FACTOR1 + FACTOR2
The effect of either factor is the same regardless of the other factor.

 μ { Score | Company, Freatment} = COMPANY + TREATMENT

Mean scores on the Practical Specialty Test according to the additive model, in terms of coefficients in a multiple regression model with indicators

		Treatments		Treatment Effects
	Company	Pygmalion	Control	(Pygmalion - Control)
	1	$\beta_0 + \beta_1$	β ₀	(FD)
	2	$\beta_0 + \beta_2 + \beta_1$	$\beta_0 + \beta_2$	β_1
How many	3	$\beta_0 + \beta_3 + \beta_1$	$\beta_0 + \beta_3$	β_1
110 w many	4	$\beta_0 + \beta_4 + \beta_1 -$	$\beta_0 + \beta_4$	β ₁
parameters	5	$\beta_0 + \beta_5 + \beta_1 $	$\beta_0 + \beta_5$	$\beta_1 \qquad \gamma \leq q$
	6	$\beta_0 + \beta_6 + \beta_1$	$\beta_0 + \beta_6$	$\beta_1 \left(- \right)$
<i>!</i>	7	$\beta_0 + \beta_7 + \beta_1$	$\beta_0 + \beta_7$	β_1
	8	$\beta_0 + \beta_8 + \beta_1$	$\beta_0 + \beta_8$	β_1
	9	$\beta_0 + \beta_9 + \beta_1$	$\beta_0 + \beta_9$	$\beta_1 + (\gamma \gamma)$
	10	$\beta_0 + \beta_{10} + \beta_1 \sim$	$\beta_0 + \beta_{10}$	β_1
•				

or non-additive The saturated model

μ{ *Response* | *Factor1, Factor2*} = FACTOR1 + FACTOR2 + FACTOR1 x FACTOR2

The effect of either factor the depends on the other factor.

µ{ Score | Company, Treatment} = COMPANY + TREATMENT +

COMPANY x TREATMENT

	Mean scores saturated m	fean scores on the Practical Specialty Test, in terms of the parameters in a aturated multiple linear regression model with interaction				
		Treatmen	<u>ts</u>	Treatment Effects		×.
	Company	Pygmalion	Control	(Pygmation - Control)		
How many	/ 1	$(\beta_0 + \beta_1)$	Bo	β_1	$\left(\uparrow - \right) +$	9
riow many	2	$\rightarrow \beta_0 + \beta_2 + \beta_1 + \beta_{11}$	$\beta_0 + \beta_2$	$\beta_1 + \beta_{11}$		I
parameter	S^{3}	$\beta_0 + \beta_3 + \beta_1 + \beta_{12}$	$\beta_0 + \beta_3$	$\beta_1 + \beta_{12}$	$\langle \rangle$	le la
paramotor	4	$\beta_0 + \beta_4 + \beta_1 + \beta_{13}$	$\beta_0 + \beta_4$	$\beta_1 + \beta_{13}$	J-1)+	1
?	5	$\beta_0 + \beta_5 + \beta_1 + \beta_{14}$	$\beta_0 + \beta_5$	$\beta_1 + \beta_{14}$		
	6	$\beta_0 + \beta_6 + \beta_1 + \beta_{15}$	$\beta_0 + \beta_6$	$\beta_1 + \beta_{15}$	$\gamma \left(- \right)$	_
	7	$\beta_0 + \beta_7 + \beta_1 + \beta_{16}$	$\beta_0 + \beta_7$	$\beta_1 + \beta_{16}$	(-1)(7 - 1)	9
\mathcal{I}	8	$\beta_0 + \beta_8 + \beta_1 + \beta_{17}$	$\beta_0 + \beta_8$	$\beta_1 + \beta_{17}$		•
60	9	$\beta_0 + \beta_9 + \beta_1 + \beta_{18}$	$\beta_0 + \beta_9$	$\beta_1 + \beta_{18}$		
	10	$\beta_0 + \beta_{10} + \beta_1 + \beta_{19}$	$\beta_0 + \beta_{10}$	$\beta_1 + \beta_{19}$	20	3

Hypothetical treatment curves plotted against another factor, illustrating additive and some non-additive conditions

A two-way ANOVA

Sometimes only one factor is of interest, sometimes both are, sometimes the interaction is the primary interest.

- The general approach is the same:
- Start with the saturated model
- Use F-tools to simplify
- Then answer specific questions about means

μ { Score | Company, Treatment} = β_0 + $\beta_1 pyg$ + $\beta_2 cmp2$ + $\beta_3 cmp3$ +

 $\beta_4 cmp4 + \beta_5 cmp5 + \beta_6 cmp6 + \beta_7 cmp7 + \beta_8 cmp8 + \beta_9 cmp9 + \beta_{10} cmp10$

The Pygmalion data with indicator variables defining treatment and companies, in an additive model

Case	<u>score</u>	pyg	<u>cmp2</u>	<u>cmp3</u>	cmp4	<u>emp5</u>	<u>стр6</u>	<u>cmp7</u>	<u>cmp8</u>	<u>cmp9</u>	<u>cmp10</u>
1	80.0	1	0	0	0	0	0	0	0	0	0
2	63.2	0	0	0	0	0	0	0	0	0	0
3	69.2	0	0	0	0	0	0	0	0	0	0
4	83.9	1	1	0	0	0	0	0	0	0	0
5	63.1	0	1	0	0	0	0	0	0	0	0
6	81.5	0	1	0	0	0	0	0	0	0	0
7	68.2	1	0	1	0	0	0	0	0	0	0
8	76.2	0	0	1	0	0	0	0	0	0	0
9	76.5	1	0	0	1	0	0	0	0	0	0
10	59.5	0	0	0	1	0	0	0	0	0	0
11	73.5	0	0	0	1	0	0	0	0	0	0
12	87.8	1	0	0	0	1	0	0	0	0	0
13	73.9	0	0	0	0	1	0	0	0	0	0
14	78.5	0	0	0	0	1	0	0	0	0	0
15	89.8	1	0	0	0	0	1	0	0	0	0
16	78.9	0	0	0	0	0	1	0	0	0	0
17	84.7	0	0	0	0	0	1	0	0	0	0
18	76.1	1	0	0	0	0	0	1	0	0	0
19	60.6	0	0	0	0	0	0	1	0	0	0
20	69.6	0	0	0	0	0	0	1	0	0	0
21	71.5	1	0	0	0	0	0	0	1	0	0
22	67.8	0	0	0	0	0	0	0	1	0	0
23	73.2	0	0	0	0	0	0	0	1	0	0
24	69.5	1	0	0	0	0	0	0	0	1	0
25	72.3	0	0	0	0	0	0	0	0	1	0
26	73.9	0	0	0	0	0	0	0	0	1	0
27	83.7	1	0	0	0	0	0	0	0	0	1
28	63.7	0	0	0	0	0	0	0	0	0	1
29	77.7	0	0	0	0	0	0	0	0	0	1

Extra SS F-test

Full model:

µ{ Score | Company, Treatment} =

COMPANY + TREATMENT +

COMPANY x TREATMENT

Reduced model:

µ{ Score | Company, Treatment} =

COMPANY + TREATMENT

F-test with, (I - 1)(J - 1) and $n - (I \times J) d.f.$

1 + (I - 1) + (J - 1) parameters

```
> fit_pyg_mult <- Im(Score ~ Company + Treat + Company:Treat,</pre>
```

- + data = case1302)
- > qplot(.fitted, .resid, data = fit_pyg_add)
- > fit_pyg_add <- Im(Score ~ Company + Treat,</pre>
- + data = case1302)

```
> anova(fit_pyg_add, fit_pyg_mult)
Analysis of Variance Table
```

```
Model 1: Score ~ Company + Treat
Model 2: Score ~ Company + Treat + Company:Treat
Res.Df RSS Df Sum of Sq F Pr(>F)
1 18 778.50
2 9 467.04 9 311.46 0.6669 (0.7221)
```

There is no evidence the treatment effect differs depending on the company (extra SS F-test on interaction term, p-value = 0.72).

No evidence aganst additive model.

Call:

Im(formula = Score ~ Company + Treat, data = case1302)

Residuals:

Min	1Q Me	edian	3Q	Max
-10.660	-4.147	1.853	3.853	7.740

Coefficients:

Estimate Std. Error t value Pr(> t)						
(Intercept) 6	§8.39316 3.	89308 17.	.568 8.9	2e-13 ***		
CompanyC2	5.36667	5.36968	0.999	0.3308		
CompanyC3	0.19658	6.01886	0.033	0.9743		
CompanyC4	-0.96667	5.36968	-0.180	0.8591		
CompanyC5	9.26667	5.36968	1.726	0.1015		
CompanyC6	13.66667	5.36968	2.545	0.0203 *		
CompanyC7	-2.03333	5.36968	-0.379	0.7094		
CompanyC8	0.03333	5.36968	0.006	0.9951		
CompanyC9	1.10000	5.36968	0.205	0.8400		
CompanyC10	4.23333	5.36968	0.788	0.4407		
TreatPygmali	on 7.22051	2.57951	2.799	0.0119 *		

It is estimated the pygmalion treatment adds 7.2 points to a platoon's score.

cansal Inference

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.576 on 18 degrees of freedom Multiple R-squared: 0.5647, Adjusted R-squared: 0.3228 F-statistic: 2.335 on 10 and 18 DF, p-value: 0.0564