Stat 412/512 TWO-WAY ANOVA EXAMPLE CONT.

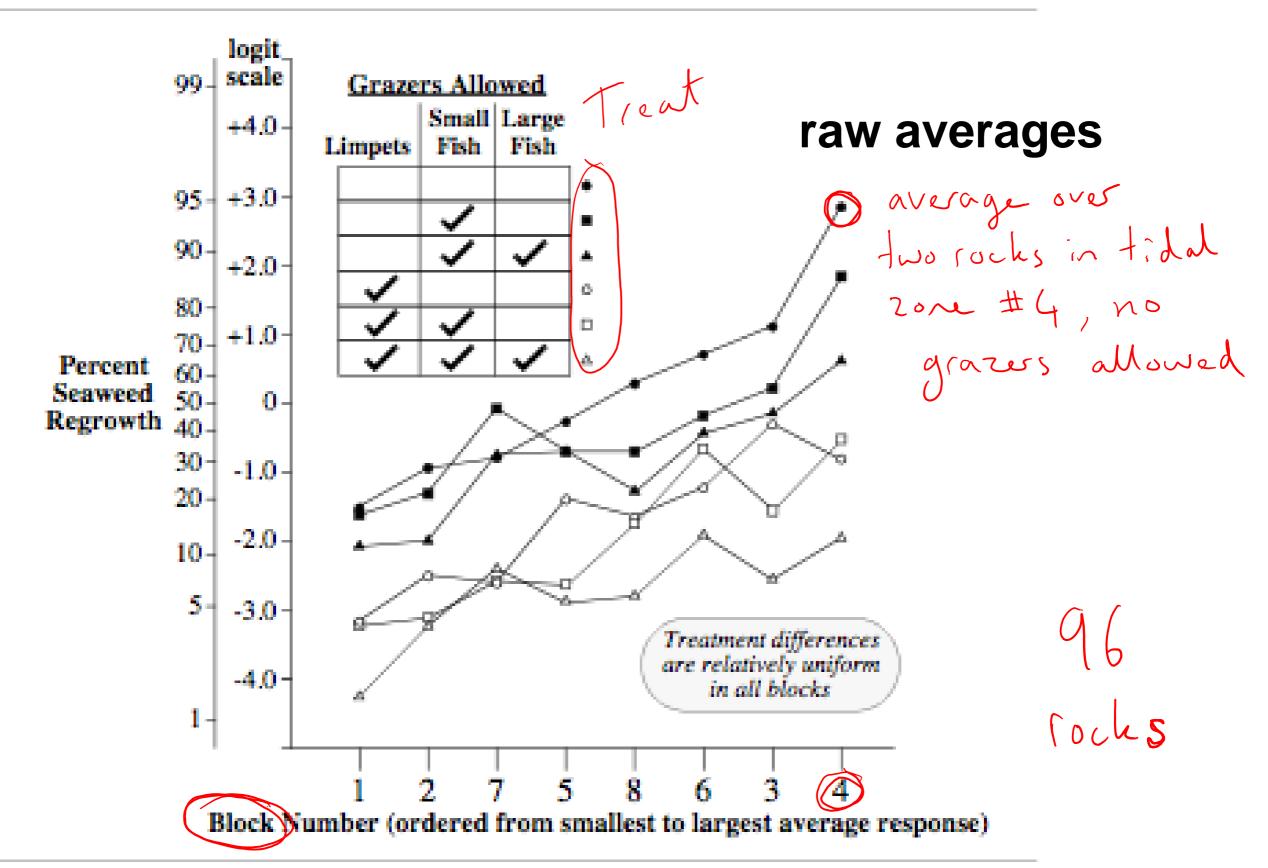
Feb 11 2015

Charlotte Wickham

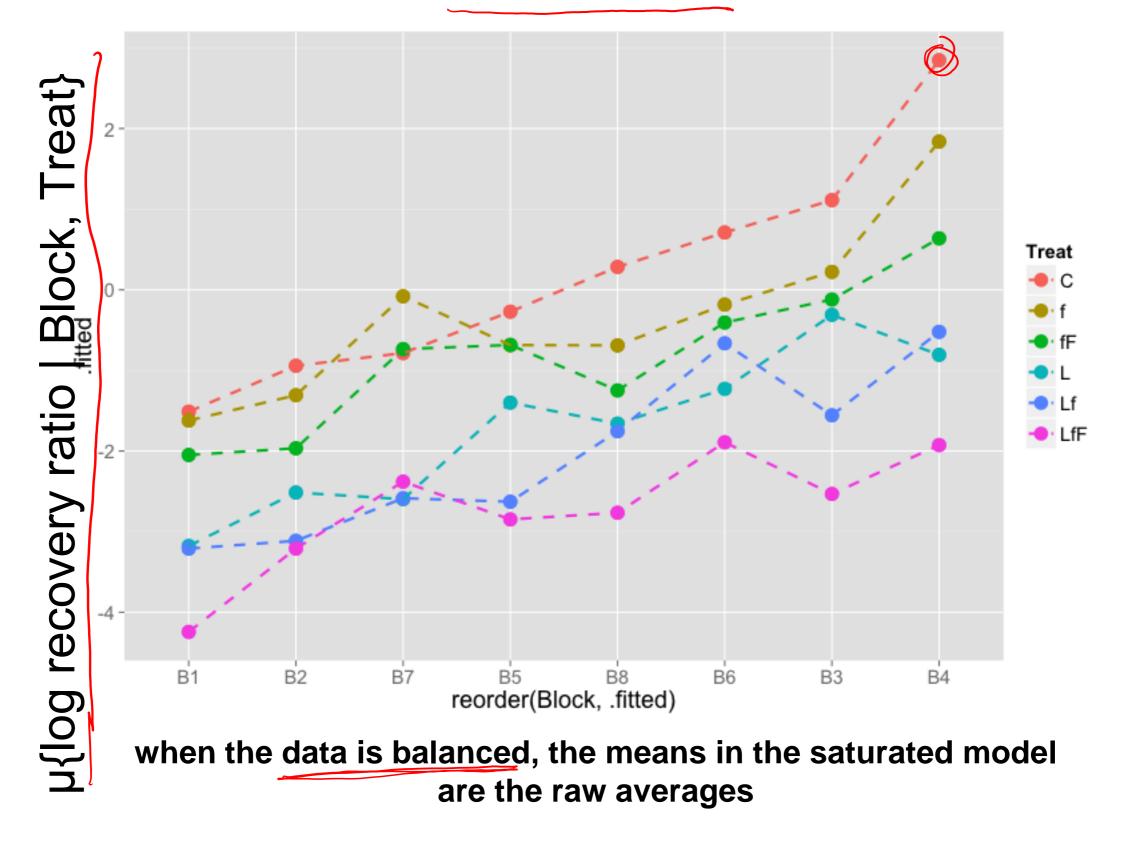
stat512.cwick.co.nz

Display 13.9

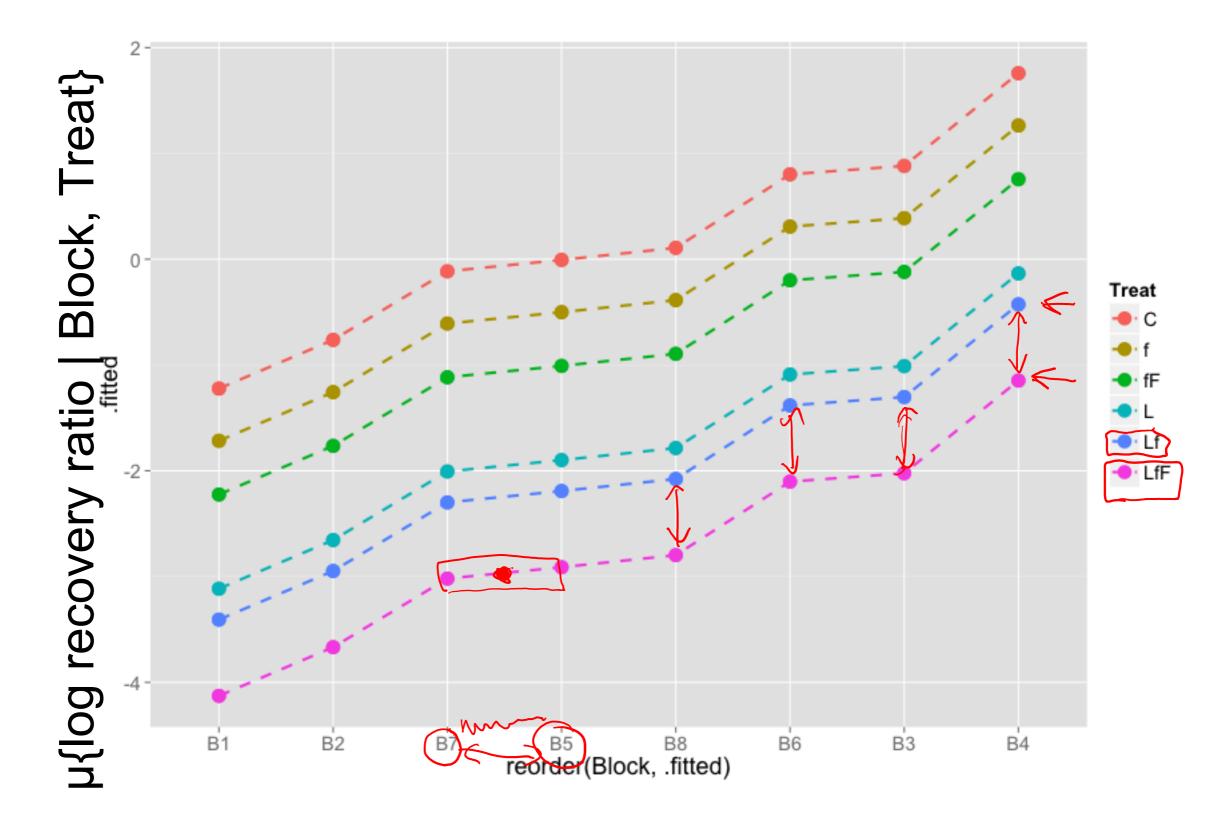
Averages of the log of the seaweed regeneration ratio versus block number, with code for treatment



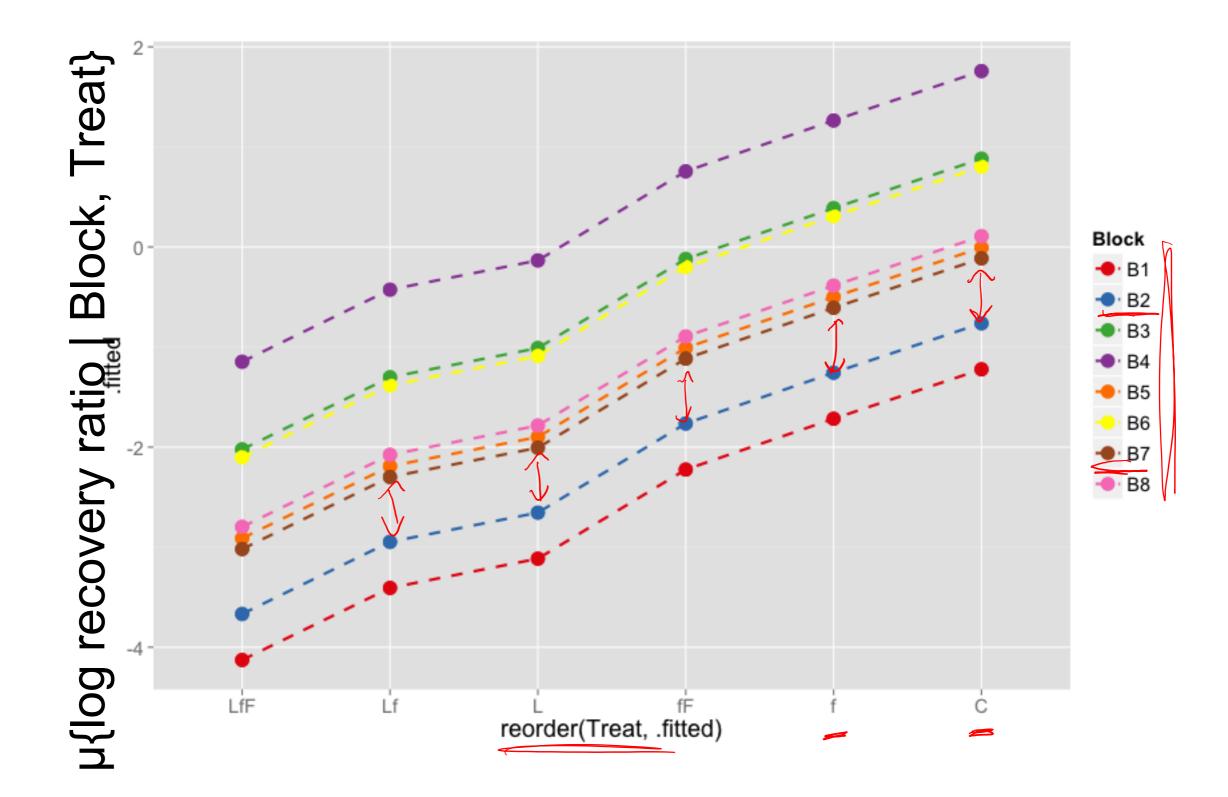
Saturated model fitted means



Additive model fitted means



Additive model fitted means



Estimating effects

not of the treatments, but of the animals

Two approaches:

Using averages over cell, rows and columns. HARD, and only relevant for balanced data

Using indicator variables and multiple regression.

A regression approach Set up indicators:

sml = 1, small fish are present if f, Ff, Lf, LFf
big = 1, large fish are present if Ff, LFf
limp =1, limpets are present if L, Lf, LFf

Equivalent to the additive model (TREAT + BLOCK):

BLOCK + sml + big + limp + sml x limp + big x limp

sml x big : can't estimate, since big fish always present with little fish.

Animal Effects

Limpet effect: change in mean log recovery ratio in going from limp = 0, to limp = 1, holding other variables constant.

How much do limpets graze (holding access by other animals constant)?

My model:

µ{log recovery ratio | Block, L, f, F} =

 $\beta_0 + \beta_1 B2 + \dots + \beta_8 \lim_{n \to \infty} + \beta_9 \operatorname{sml} + \beta_{10} \operatorname{big}$

Limpet effect = β_8

If there were animal interactions (e.g. limp x sml) then the effect of limpets would depend on whether small (or big) fish also had access.

Analysis of Variance Table

Model 1: $log(Cover/(100 - Cover)) \sim Block + L + f + F$ Model 2: $\log(Cover/(100 - Cover)) \sim Block + L + f + F + (I:F) + (L:f)$ no evidence for animal RSS Df Sum of Sq F Pr(>F) Res.Df 85 29.996 1 interactions 83 29.767 2 0.22928 0.3197 0.7273 2 Call: lm(formula = log(Cover/(100 - Cover)) ~ Block + L + f + F, data = case1301)Residuals: Min 10 Median 30 Max -1.47682 -0.40585 0.03001 0.33617 1.30143 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) -1.2545 0.2011 -6.238 1.66e-08 *** BlockB2 0.4600 0.2425 1.897 0.06127 . BlockB3 2.1046 0.2425 8.678 2.42e-13 *** BlockB4 2.9807 0.2425 12.291 < 2e-16 *** 1.2160 0.2425 5.014 2.87e-06 *** BlockB5 BlockB6 2.0251 0.2425 8.350 1.11e-12 *** BlockB7 1.1085 0.2425 4.571 1.64e-05 *** BlockB8 1.3300 0.2425 5.484 4.19e-07 *** -1.8288 0.1213 -15.082 < 2e-16 *** L estimates of f -0.3933 0.1485 -2.648 0.00965 ** 0.1485 -4.135 8.31e-05 *** -0.6140 F effects

There is no evidence that the grazing effects differ depending on microhabitat (extra SS F-test on interaction between grazers and blocks, p-value = 0.12).

There is no evidence that the different grazers impact each other (extra SS F-test on interactions between limpets and fish, p-value = 0.72).

cochs Allowing limpets access to plots caused significant changes in the regeneration of seaweed (two sided p-value) < 0.00001 from a t-test on the effect of limpets). It is estimated that the median regeneration ratio when limpets regeneration time when they are excluded (95% CI: 0.126 were present is 0.161 times as large as the median to 0.205).

centint

exp(-1.82) =

0.161

... two more, one for small fish, one for big fish

Estimating effects

not of the treatments, but of the animals

Two approaches:

Using averages over cell, rows and columns. HARD, and only relevant for balanced data

Using indicator variables and multiple regression.

Basic Idea: Averages over cells, rows and columns estimate means of interest

Display 13.12

Table of averages of log percent seaweed regeneration ratio with different grazer combinations in eight blocks average log recovery ratio for all treatments in first block all treatments in first block

average log recovery ratio

for control treatment in first block Treatment: Grazers with Access

Block	Control	L	f	Lf	fF	LfF	Block Average	Block Effect
1 2 3 4 5	-1.51 -0.94 1.11 2.85 -0.27	-3.18 -2.51 -0.31 -0.81 -1.40	-1.62 -1.31 0.22 1.84 -0.69	-3.21 -3.11 -1.56 -0.52 -2.63	-2.05 -1.97 -0.12 0.64 -0.68	-4.24 -3.21 -2.53 -1.93 -2.83	-2.64 -2.18 -0.53 0.34 -1.42	-1.40 -0.94 0.70 1.58 -0.19
6 7 8 Treatment Average	0.71 -0.79 0.28	-1.23 -2.60 -1.66 -1.71	-0.18 -0.08 -0.64 -0.31	-0.66 -2.59 -1.75 -2.00	-0.41 -0.74 -1.25 -0.82	-1.89 -2.38 -2.77 -2.72	-0.61 -1.53 -1.31 -1.23	0.62 -0.29 -0.07
Treatment Effect	1.41	-0.48	0.92	-0.77	0.41	-1.49		

average log recovery ratio for control treatments over all blocks

average log recovery ratio over all treatments and all blocks

p. 388

Balanced data only

Basic Idea: Our best guess for the mean recovery ratio for the control treatment, is the average recovery ratio for the control treatment, over all the blocks

Display 13.12

p. 388

Table of averages of log percent seaweed regeneration ratio with different grazer combinations in eight blocks

		Disals	Disals					
Block	Control	L	f	Lf	fF	LfF	Block Average	Block Effect
1	-1.51	-3.18	-1.62	-3.21	-2.05	-4.24	-2.64	-1.40
2	-0.94	-2.51	-1.31	-3.11	-1.97	-3.21	-2.18	-0.94
3	1.11	-0.31	0.22	-1.56	-0.12	-2.53	-0.53	0.70
4	2.85	-0.81	1.84	-0.52	0.64	-1.93	0.34	1.58
5 6	-0.27	-1.40	-0.69	-2.63	-0.68	-2.83	-1.42	-0.19
6	0.71	-1.23	-0.18	-0.66	-0.41	-1.89	-0.61	0.62
7	-0.79	-2.60	-0.08	-2.59	-0.74	-2.38	-1.53	-0.29
8	0.28	-1.66	-0.64	-1.75	-1.25	-2.77	-1.31	-0.07
Treatment Average	0.18		-0.31	-2.00	-0.82	-2.72	-1.23	
Treatment Effect	1.41	-0.48	0.92	-0.77	0.41	-1.49		
μc	Í (J) I	Ĵ _f	µ̂Lf ∣	µ _f F	ĴĹſF		

ME -Me

Your turn

Which means can we compare to tell us about the big fish (F) effect?

μĈ μL μf μLf μfF μLfF

Large fish effect = change in mean associated with letting large fish access rock, (holding access by other animals constant).

Balanced data only

Large fish:
$$\frac{1}{2}(\hat{\mu}_{Ff} - \hat{\mu}_{f}) + \frac{1}{2}(\hat{\mu}_{FfL} - \hat{\mu}_{fL})$$

Small fish: $\frac{1}{2}(\hat{\mu}_{Lf} - \hat{\mu}_{L}) + \frac{1}{2}(\hat{\mu}_{f} - \hat{\mu}_{C})$
Limpets: $\frac{1}{2}(\hat{\mu}_{LfF} - \hat{\mu}_{fF}) + \frac{1}{2}(\hat{\mu}_{Lf} - \hat{\mu}_{f}) + \frac{1}{2}(\hat{\mu}_{L} - \hat{\mu}_{C})$

Only makes sense if each term is estimating the same thing, i.e. the effect of one species doesn't depend on the presence of another (no interactions)

Limpets x small fish:

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} \hat{\mu}_{LfF} - \hat{\mu}_{fF} \end{pmatrix} \begin{pmatrix} \hat{\mu}_{Lf} - \hat{\mu}_{f} \end{pmatrix} - \begin{pmatrix} \hat{\mu}_{L} - \hat{\mu}_{C} \end{pmatrix}$$

Limpets x large fish:
 $\begin{pmatrix} \hat{\mu}_{LfF} - \hat{\mu}_{fF} \end{pmatrix} - \begin{pmatrix} \hat{\mu}_{Lf} - \hat{\mu}_{f} \end{pmatrix} \sim \bigcirc$

Display 13.13

Balanced data only

p. 389

Sep	parate effec	ts of gr	azers 1	ısing li	near co	mbina	tions of	treatme	ent mea	ns
	Treatment:	LfF	fF	Lf	f	L	C	Contrast Summary		
	Sample size:		16	16	16	16	16		Standard	
	Average:	-2.7247	-0.8214	-2.0044	-0.3137	-1.7120	+0.1805	Estimate	Error	t-Stat
\rightarrow	Large Fish:	$+\frac{1}{2}$	$+\frac{1}{2}$	- 1/2	- 1/2	0	0	-0.6140	0.1497	4.10
—)	Small Fish:	0	0	$+\frac{1}{2}$	$+\frac{1}{2}$	- 1/2	- 1/2	-0.3933	0.1497	2.63
<u> </u>	Limpets:	$+\frac{1}{3}$	- 1/3	$+\frac{1}{3}$	- 1/3	$+\frac{1}{3}$	- 1/3	-1.8288	0.1222	14.97
Lim	pets x Small:	$+\frac{1}{2}$	- 1/2	$+\frac{1}{2}$	- 1/2	- 1	+ 1	+0.0955	0.2593	0.37
Lim	pets x Large:	+ 1	- 1	- 1	+ 1	0	0	-0.2126 not	0.2994 signific	0.71 ant

Like in the one-way case (from ST411/511) $Y = C_1 \mu_1 + C_2 \mu_2 + C_3 \mu_3 + ... + C_1 \mu_1$ $g = C_1 \overline{Y}_1 + C_2 \overline{Y}_2 + C_3 \overline{Y}_3 + ... + C_1 \overline{Y}_1$ $SE_g = s_p \sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + ... + \frac{C_I^2}{n_I}}$

A two-way ANOVA

Sometimes only one factor is of interest, sometimes both are, sometimes the interaction is the primary interest.

- The general approach is the same:
- Start with the non-additive/saturated model
- Use F-tools to simplify

Then answer specific questions about means