Stat 412/512

MULTIFACTOR STUDIES WITHOUT REPLICATION Feb 12 2015

Charlotte Wickham

stat512.cwick.co.nz

Replication

Multiple measurements at a specific combination of explanatory variable values, are called **replicates**.

- Meadowfoam, seaweed grazers had replicates.
- This chapter (14) focusses on examples without replicates.

Meadowfoam

Two factors: Intensity & Timing For each combination we have two **replicates**

Seaweed grazers

Two factors: Microhabitat & Treatment For each combination we have two **replicates**

Today

Why is replication good to have? What do you do when you don't have replication?

An example, a two factor study with no replication.

Two-factor example with replicates

factor 1: categorical with two levels, A and B.

factor 2: continuous, but • A only set to three levels, 1, • B 2 and 3.

3 replicates at each combination of factor 1 and factor 2.

Two-factor example without replicates

factor 1: categorical with two levels, A and B.

factor 2: continuous, set

NO replicates.

Why are replicates good?

Replicates allow a "model-free" estimate of variation, σ^2 . Lack of fit F-tests are available for any model.

Without replicates we rely on our model being adequate, and using the residuals to estimate, σ^2 .

If the saturated model is fitted, there are no degrees of freedom left for estimating σ^2 .

Strategy

We are still working in the multiple regression world.

Fit tentative model, check for transformations outliers, refine and check model. Interpret.

Ways to deal with non-replication:

 \rightarrow Assume some interactions don't exist.

 \rightarrow Treat numerical factors as continuous not categorical.

case1401: Chimp data

Teach 10 American Sign Language Signs to four chimpanzees.

Response: "time in minutes it took to learn the sign"

Are some signs easier to learn? Do some chimps take longer to learn words?

Tentative model

The saturated model: μ{Minutes | Chimp, Sign } = CHIMP + SIGN + CHIMP*SIGN leaves us with no d.f. to estimate σ. We are going to assume there are **no interactions**, and fit the additive model:

 μ { Minutes | Chimp, Sign } = CHIMP + SIGN

Residual plot from:

μ{ Minutes | Chimp, Sign } = CHIMP + SIGN

µ{ log(Minutes) | Chimp, Sign } =
CHIMP + SIGN

We can't evaluate this with an F-test, we have to make an argument based on this plot (or outside knowledge).

Analysis of variance for the additive model fit to log(acquisition times)

Source of Variation	Sum of Squares	df	Mean Square	F-Statistic	p-value
Signs Chimpanzees Residual	45.6900 5.3329 17.6526	9 3 27	5.0767 1.7776 0.6538	7.7649 2.7190	0.00001 0.0642
Total	68.6755	39			

R-squared = 74.3%

Estimated SD = 0.8086

There is strong evidence that sign is associated with a change in mean log time to learn word (extra sum of squares F-test on 9 and 27 degrees of freedom, pvalue < 0.0001), after accounting for <u>chimp</u>.

There is weak evidence that chimp is associated with a change in median time to learn word (extra sum of squares F-test on 3 and 27 degrees of freedom, pvalue < 0.06), after accounting for

Multiple comparisons

If we want to make all pairwise comparisons between Signs we should adjust for multiple comparisons.

Tukey-Kramer is appropriate here.

Multiple comparisons of sign means on the log scale

