
# Stat 412/512 VARIABLE SELECTION EXAMPLE

Feb 20 2015

**Charlotte Wickham** 

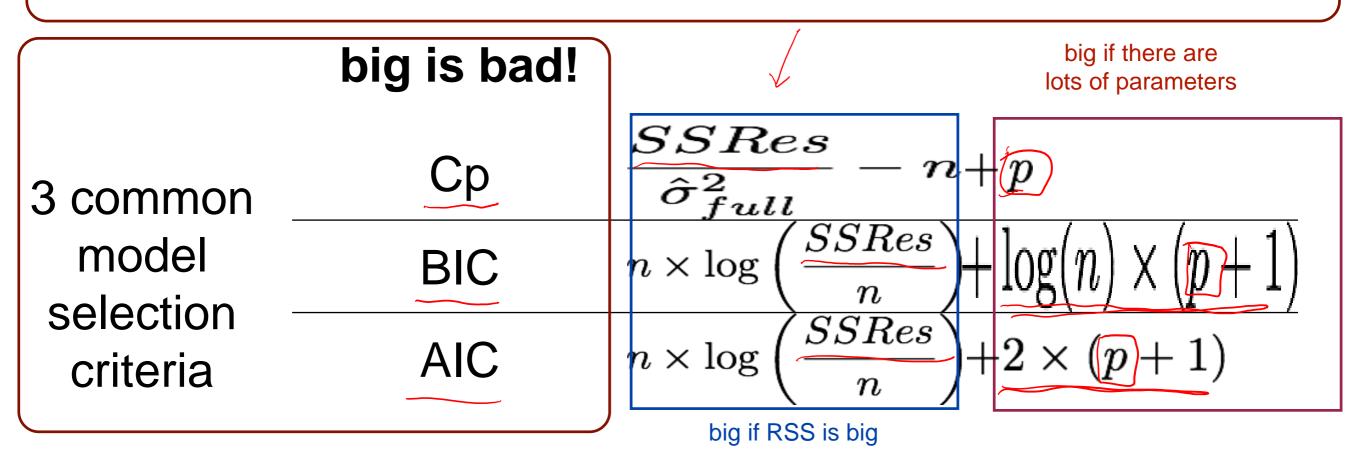
stat512.cwick.co.nz



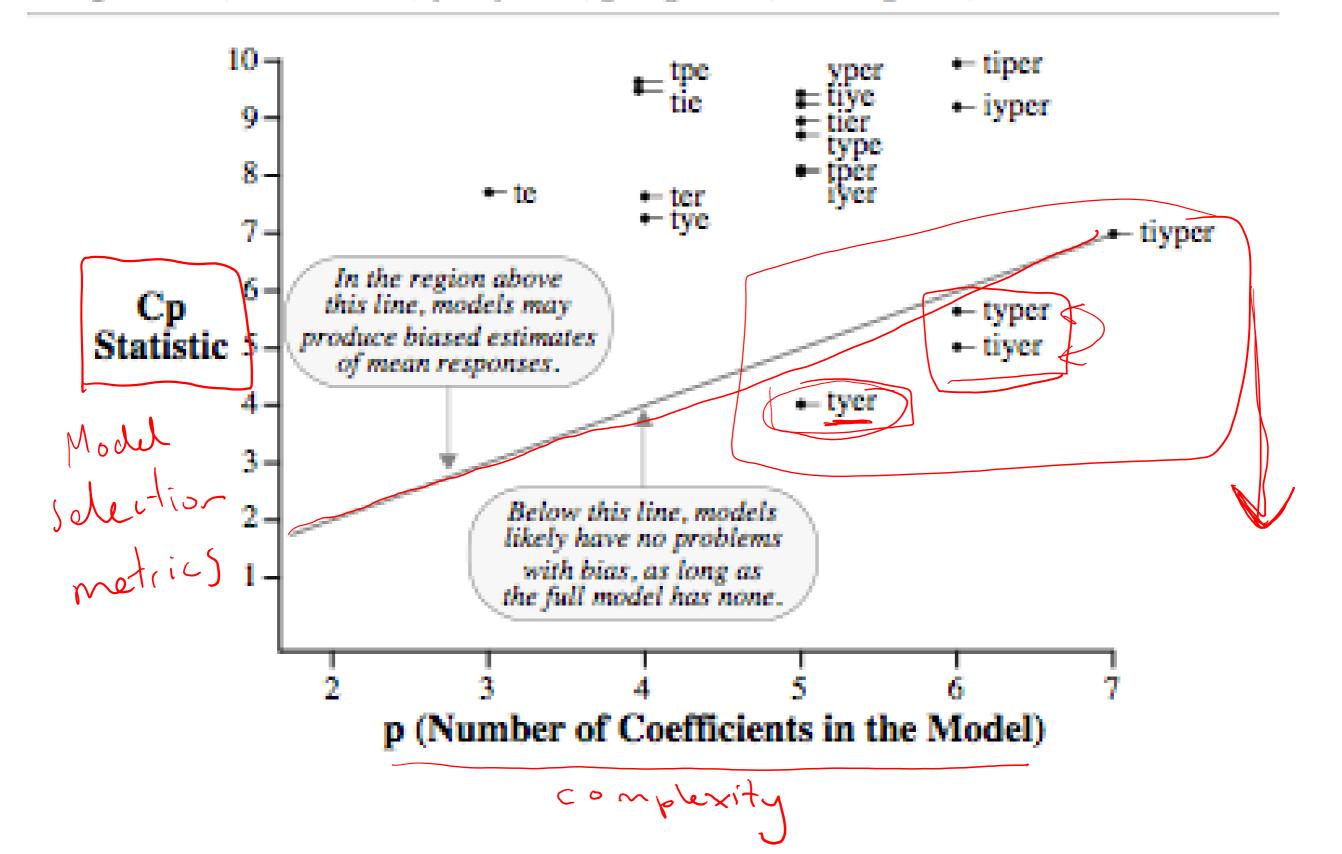
#### All subsets

Look at all possible models.

Then judge them on some measure of fit.


Generally learn the most by looking at a few good models.

#### Measures of fit P=# \$50


If the number of parameters are the same, we prefer the model with smaller residual sum of squares (RSS).

If the number of parameters are different, we want to balance smaller RSS with fewer parameters.

remember RSS always gets smaller if you add another parameter



#### Cp plot for State SAT averages (showing only those models with Cp < 10); t = log takers, i = income, y = years, p = public, e = expend, and r = rank



# You can't trust inference after variable selection. Why?

We choose variables to be in the model if, in our data, they show some power to explain the response.

If a variable appears in our final model, it has by construction, shown some power to explain the response.

It doesn't then make sense to ask if the variable is significant...we'll get a small p-value because we only selected variables that gave low p-values!

Lab: with explanatory variables generated to have absolutely no relationship to the response, the best model selected by model selection has very small p-values!

#### Methods we won't talk about

but can be useful

Principal component based methods Penalized methods (ridge, lasso, lars)

### case1202: Sex Discrimination

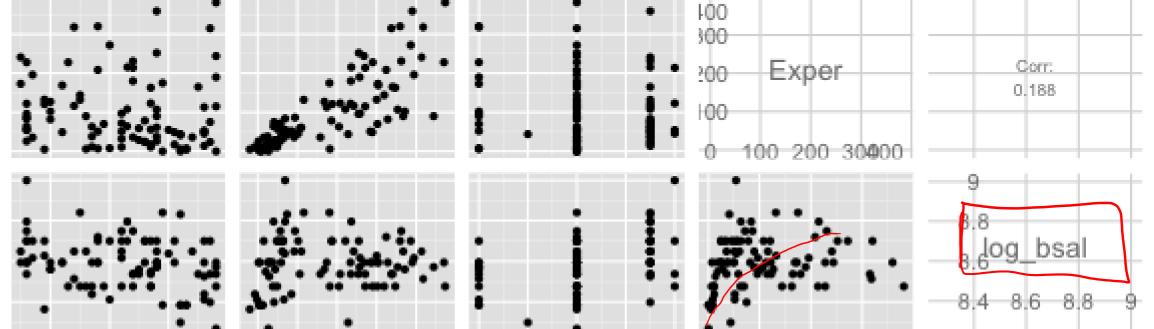
months

|                  |             |           | /         |     | · /       |            |
|------------------|-------------|-----------|-----------|-----|-----------|------------|
| Sex Discrimin    | ation Data  |           | $\sim$    |     |           |            |
| Beginning Salary | 1977 Salary | FSex(1=F) | Seniority | Age | Education | Experience |
| 5040             | 12420       | 0         | 96        | 329 | 15        | 14         |
| 6300             | 12060       | 0         | 82        | 357 | 15        | 72         |
| 6000             | 15120       | 0         | 67        | 315 | 15        | 35.5       |
| 6000             | 16320       | 0         | 97        | 354 | 12        | 24         |
| 6000             | 12300       | 0         | 66        | 351 | 12        | 56         |
| 6840             | 10380       | 0         | 92        | 374 | 15        | 41.5       |
| 8100             | 13980       | 0         | A 66      | 369 | 16        | 54.5       |
|                  |             | Sex       |           |     |           |            |

93 "skilled, entry-level clerical" employees at a bank.

Did women receive lower starting salaries than men, with similar qualifications and experience?

## Strategy


Use model selection to find a suitable model to explain starting salary in terms of age, experience, seniority and education.

Once a good (or some good) models are found, add in the Sex indicator to estimate the Sex effect.

| 0            |        |        |         |        |
|--------------|--------|--------|---------|--------|
| 0 Senior     | Corr:  | Corr:  | Corr:   | Corr:  |
| 0 0011101    | -0.184 | 0.0598 | -0.0747 | -0.294 |
| 0 80 90100 - |        |        |         |        |
| 0 00 90100   |        |        |         |        |

| • • • • • • | • <u>888</u>                                   |        |       |                 |
|-------------|------------------------------------------------|--------|-------|-----------------|
|             | 600<br>500<br>400<br>3004005006007 <b>80</b> 0 | -0.225 | 0.798 | Corr:<br>0.0648 |
| • •• •      | •• • •                                         | 16     |       |                 |

|     | 16                |        |       |
|-----|-------------------|--------|-------|
|     | 14                |        |       |
|     | • 12 Educ         | Corr:  | Corr: |
|     | • 12              | -0.101 | 0.407 |
| • • | 10                |        |       |
|     | • 8 10 12 14 16 - |        |       |
|     | • • •             |        |       |



## Possible model terms

| Main Effect Variables | Quadratic Variables         | Interaction Variables                                                                   |
|-----------------------|-----------------------------|-----------------------------------------------------------------------------------------|
| s = seniority         | $t = s^2$                   | $m = s \times a$ $c = a \times e$                                                       |
| a = age               | $b = a^2$                   | $n = s \times e$ $k = a \times x$                                                       |
| e = education         | $f = e_a^2$                 | $\mathbf{v} = \mathbf{s} \times \mathbf{x}$ $\mathbf{q} = \mathbf{e} \times \mathbf{x}$ |
| x = experience        | $\mathbf{y} = \mathbf{x}^2$ |                                                                                         |
|                       | -                           |                                                                                         |

allow for curvature

allow for interaction

14 terms means  $2^{14}$ = 16384 possible models.

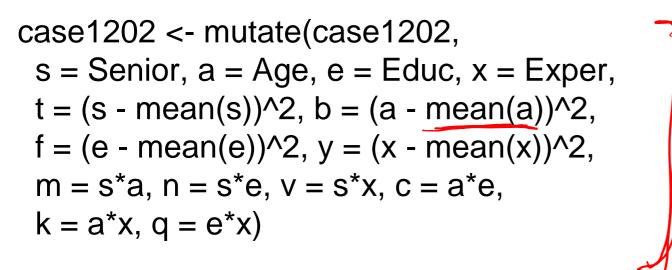
But:

models shouldn't include quadratic terms if they don't include the linear one

models shouldn't include interaction terms if they don't include the main effects

Strategy: find a subset of good models, then restrict attention to those that follow good practice.

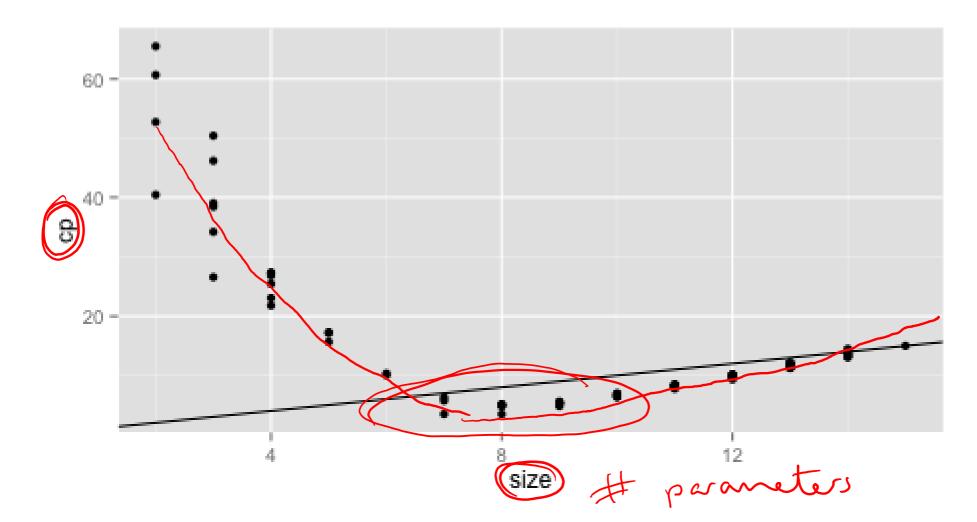
## Aside: model selection in R

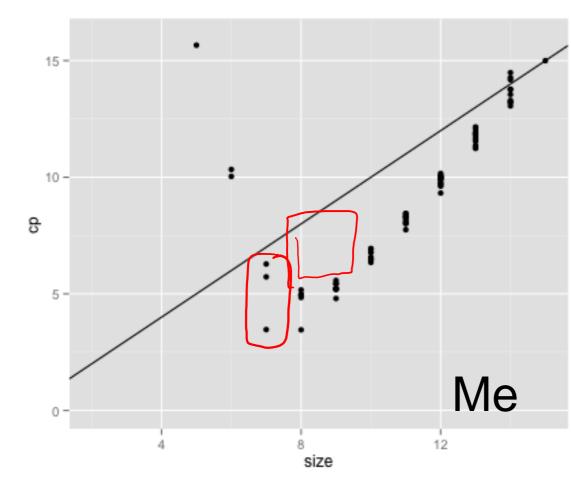

The leaps package very quickly finds the best models for each size (number of parameters).

I.e. find the 6 best models of size 5.

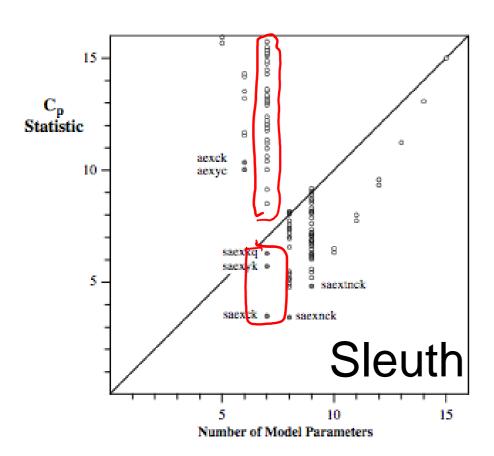
It doesn't know about "good practice".

Find best 20 models of each size, then find the "good practice" models, and examine them.


A numerical trick: center quadratic terms to remove correlation with linear terms.




# all subsets


all <- regsubsets(log\_bsal,~ s + a + e + x + t + b + f + y + m + n + v + c + k + q, data = case1202, nbest = 30, method = "exhaustive", nvmax = 14)

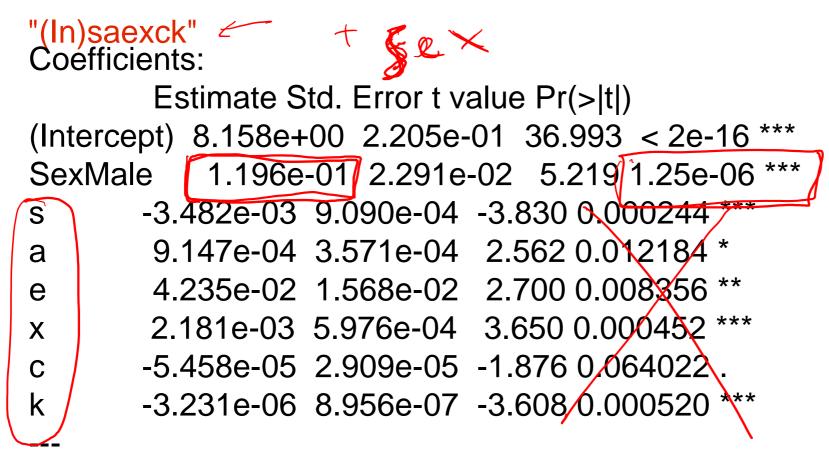
#### 100 "good" models





Cp Plot for the sex discrimination study




I ended up with fewer low Cp models.

Looks like I have at least the best 5 models.

After looking at this plot, I might try to get more models with 8 & 9 terms.

(\\_)
"(In)saexck" "(In)saexnck" "(In)saexyc" "(In)saexkq"
"(In)saexbck"
5 best models according to BIC
"(In)saexnck" "(In)saexck" "(In)saextnck"
"(In)saexbck" "(In)saextck"
5 best models according to Cp

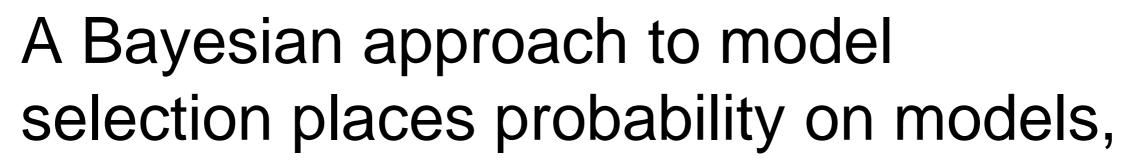
## Picking a single model



Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08528 on 85 degrees of freedom Multiple R-squared: 0.5975, Adjusted R-squared: 0.5644 F-statistic: 18.03 on 7 and 85 DF, p-value: 1.786e-14 After adjusting for seniority, experience, age and education, the median salary for men is estimated to be 1.13 times the median salary for women (95% confidence interval 1.08 to 1.18).

#### Informally accounting for model selection


Bayesian posterior analysis of the difference between male and female logbeginning salaries

|                                                                                                                                                                                                                                                            |                             |                                                                                                                                                                                                                                                | Additio                                                                                                                                                                              | on of sex                                                                                                                                                                                                                     | indicator                                                                                                                                                                                                                |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Model                                                                                                                                                                                                                                                      | p                           | BIC                                                                                                                                                                                                                                            | coeff                                                                                                                                                                                | <u>SE</u>                                                                                                                                                                                                                     | 1-sided<br>p-value                                                                                                                                                                                                       |                                     |
| saexck<br>saexyc<br>saexkq<br>saexnck<br>aexyc<br>aexck<br>saexckb<br>saexckb<br>saexckb<br>saexckb<br>saexckf<br>saexckf<br>saexckf<br>saexckf<br>saexckf<br>saexckf<br>saexckg<br>exyq<br>saexckf<br>saexcky<br>saexcky<br>saexcky<br>saexcky<br>saexcky | P<br>7778668888866688587887 | -401.40<br>-398.89<br>-398.28<br>-398.08<br>-397.81<br>-397.51<br>-396.49<br>-396.37<br>-396.36<br>-396.33<br>-396.26<br>-396.15<br>-396.12<br>-396.12<br>-396.12<br>-396.12<br>-395.93<br>-395.93<br>-395.91<br>-395.80<br>-395.80<br>-395.80 | 1196<br>1287<br>1244<br>1173<br>1247<br>1135<br>1195<br>1195<br>1206<br>1258<br>1331<br>1345<br>1345<br>1345<br>1345<br>1345<br>1345<br>1196<br>1257<br>1328<br>1195<br>1196<br>1230 | .0229<br>.0226<br>.0221<br>.0229<br>.0238<br>.0246<br>.0229<br>.0232<br>.0221<br>.0225<br>.0221<br>.0225<br>.0221<br>.0225<br>.0221<br>.0221<br>.0230<br>.0230<br>.0230<br>.0230<br>.0231<br>.0231<br>.0231<br>.0231<br>.0231 | 6.27E-7<br>8.42E-8<br>1.18E-7<br>9.48E-7<br>5.59E-7<br>6.94E-6<br>6.70E-7<br>9.10E-7<br>2.41E-7<br>1.37E-7<br>1.96E-8<br>1.02E-9<br>6.93E-7<br>5.54E-7<br>1.11E-8<br>2.81E-7<br>1.51E-8<br>7.46E-7<br>7.31E-7<br>6.95E-7 | Th<br>(<br>gi<br>r<br>a<br>ch<br>ma |
|                                                                                                                                                                                                                                                            |                             |                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                     |

Top models (Sleuth's) and the coefficient of Sex.

They are all very close, which gives us some relief that the actual model chosen doesn't matter too much

### Another look at BIC



 $Pr\{M_{i} \mid D\} = Pr\{M_{i}\} exp\{-BIC_{i}\} / SUM$  prior probability prior probability of seeing the data if model i is true

of model i

where SUM =  $\sum_{i} \{ \Pr\{M_i\} \exp\{-BIC_i\} \}$ 

It's convenient to say "all models are equally probable before we see any data".

#### Formally accounting for model selection

Bayesian posterior analysis of the difference between male and female logbeginning salaries

|                |   |          |             | Additio | on of sex   | indicator |
|----------------|---|----------|-------------|---------|-------------|-----------|
|                |   |          | posterior   |         |             | 1-sided   |
| Model          | p | BIC      | probability | coeff   | SE          | p-value   |
|                | - |          |             |         |             |           |
| saexck         | 7 | -401.40  | .7709       | 1196    | .0229       | 6.27E-7   |
| saexyc         | 7 | -398.89  | .0625       | 1287    | .0226       | 8.42E-8   |
| saexkq         | 7 | -398.28  | .0340       | 1244    | .0221       | 1.18E-7   |
| saexnck        | 8 | -398.08  | .0279       | 1173    | .0229       | 9.48E-7   |
| aexyc          | 6 | -397.81  | .0213       | 1247    | .0238       | 5.59E-7   |
| aexck          | 6 | -397.51  | .0157       | 1135    | .0246       | 6.94E-6   |
| saexckb        | 8 | -396.49  | .0057       | 1195    | .0229       | 6.70E-7   |
| saexckt        | 8 | -396.37  | .0051       | 1189    | .0232       | 9.10E-7   |
| saexkqb        | 8 | -396.36  | .0050       | 1206    | .0221       | 2.41E-7   |
| saexycn        | 8 | -396.33  | .0048       | 1258    | .0225       | 1.37E-7   |
| saexk          | 6 | -396.26  | .0045       | 1331    | .0221       | 1.96E-8   |
| sexyq          | 6 | -396.15  | .0040       | 1345    | .0201       | 1.02E-9   |
| saexckf        | 8 | -396.12  | .0039       | 1196    | .0230       | 6.93E-7   |
| saexckg        | 8 | -396.05  | .0037       | 1208    | .0230       | 5.54E-7   |
| exyq           | 5 | -395.93  | .0032       | 1302    | .0211       | 1.11E-8   |
| saexcky        | 8 | -395.91  | .0032       | 1257    | .0232       | 2.81E-7   |
| saexyq         | 7 | -398.89  | .0031       | 1328    | .0218       | 1.51E-8   |
| saexckm        | 8 | -395.84  | .0030       | 1195    | .0231       | 7.46E-7   |
| saexckv        | 8 | -395.80  | .0028       | 1196    | .0231       | 7.31E-7   |
| saexbc         | 7 | -395.20  | .0016       | 1230    | .0237       | 6.95E-7   |
| and a constant |   | 0,00,000 | 10010       | 11200   | 100 Acres 1 | 0.000-1   |

# Formally accounting for model selection Model averaging

Bayesian posterior estimate of the Sex effect:  $\sum_{i} Pr\{ M_i \mid D \}$  x estimate of Sex effect in Model i = -0.1206

Bayesian posterior estimate of the p-value  $\sum_i Pr\{ M_i \mid D \} x p$ -value Sex effect in Model i

 $= 6.7 \times 10^{-7}$ 

We have allowed the data to dictate the model. All our traditional inferences act as though the model was pre-specified.

Estimates, confidence intervals and p-values should be used with caution.

There are approaches to try to fix this. A simple one, if you have enough data, is to split your data into one set for choosing the model and an independent one for estimation.