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μ{Y | X1, ... Xp} = β0 + β1X1 + ... + βpXp

Overview of regression

+ assumptions:

There is a Normally distributed subpopulation at each 

combination of explanatory variables values.

The means of the subpopulations fall on the line/surface 

defined above ( μ{Y | X1, ... Xp} )

The subpopulation standard deviations are all equal to σ

The selection of an observation from one subpopulation is 

independent of the selection of any other observation.

A model for the mean:

The deviation of an observation from the mean, is independent 

of the deviation from the mean for any other observation. }
equivalent

Ch. 15 &16



Serial Correlation

The multiple regression tools rely on the 

observations being independent (after 

accounting for the effects of the 

explanatory variables).

Often when measurements are made at 

adjacent points in time or space the 

observations are correlated.



case1501: Patch-cut logging

Clear cutting (stripping the land of all vegetation) is 
one method of logging Douglas Fir.

Water quality in streams is adversely affected by 
clear cutting.

An alternative is patch cutting.

Observe two watersheds, one from patch-cut and one 
undisturbed.

Measure water quality by nitrates.

Is the mean nitrate level higher for the patch cut 
watershed?



Your turn

Ignoring of the appropriateness of 

regression, how would you answer the 

question of interest?

Is the mean nitrate level higher for the 

patch cut watershed compared to 

undisturbed watershed?





After transformation, and subtracting the sample average from 

each.

Both are centered around 0.

Notice the “runs” of observations above or below the mean.



Serial correlation

Positive serial correlation: an observation 

on one side of the mean tends to be followed 

by another observation on the same side of 

the mean.

Negative serial correlation: an observation 

on one side of the mean tends to be followed 

by another observation on the opposite side 

of the mean.

a.k.a autocorrelation



an uncorrelated series for comparison

The “runs” make averages 

of subsamples much more 

variable about the mean 

than for uncorrelated 

series.

The observations also 

exhibit less variability than 

expected without 

correlation.

The usual SE on the 

average formula, 

s /√n

will overestimate the 

precision when there is 

positive autocorrelation.



Two solutions

1. Adjust standard errors to be more 

appropriate.

2. Filter variables to remove correlation.

Either way you need to estimate the extent of 

the correlation (and make an assumption 

about it’s structure).

More advanced methods explicitly model the 

correlation.



Examining serial correlation
Week Patch Nocut lag1_Patch lag1_Nocut

1    1 -1.32 -1.21         NA         NA

2    4 -2.02 -1.91      -1.32      -1.21

3    7 -2.02 -1.91      -2.02      -1.91

4   10  0.18 -1.91      -2.02      -1.91

5   13 -0.92 -1.21       0.18      -1.91

6   16 -2.02 -1.91      -0.92      -1.21

We see a 

positive 

correlation!

the  transformed nitrate 

concentration from the 

previous week



Estimating serial correlation

Or in R:
with(case1501, acf(Nocut))$acf

[,1]

[1,]  1.000000000

[2,]  0.744034541

[3,]  0.622066930

[4,]  0.493194040

covariance of current and previous residual variance of residuals

r2 2nd serial correlation coefficient

essentially, the sample correlation 

between current and previous residual

r1 1st serial correlation coefficient



1. An adjusted SE on the sample average

where r1 is the first serial correlation 

coefficient.

Appropriate under the autoregressive 

model of order 1 (AR(1)):
• The series is measured at equally spaced times

• Let v be the long run series mean, then

μ { Yt - v | past history } = α ( Yt-1 - v )

where α is the first order autocorrelation coefficient.



A two sample comparison

Do the usual two sample procedure, but adjust the 
standard error:

pooled s.d.pooled correlation 

coefficient

pooled = assume the same for both watersheds,

and use both sets of data to estimate them



2. Filter variables to remove correlation.

If the AR(1) model is adequate and

μ{ Yt | Xt } = β0 + β1Xt

Then the filtered variables:

Vt = Yt - αYt-1

Ut= Xt - αXt-1 

are related by the same slope:

μ{ Vt | Ut } = β0(1 - α) + β1Ut

with no serial correlation

Use r1 as an estimate for α. 

Filter response and explanatory. 

Then regress filtered variables. 



case1502: Global Temperature

The data are the temperatures (in degrees Celsius) averaged for 

the northern hemisphere over a full year, for years 1880 to 1987. 

The 108-year average temperature has been subtracted, so 

each observation is the temperature difference from the series 

average.



Your turn

Ignoring of the appropriateness of 

regression, how would you answer the 

question of interest?

Is the mean temperature increasing?



Is serial correlation a problem?

> fit_slr <- lm(Temp ~ Year, data = case1502)

> summary(fit_slr)$coef

Estimate   Std. Error   t value     Pr(>|t|)

(Intercept) -8.786714263 0.6795783683 -12.92966 1.592721e-23

Year         0.004493603 0.0003514301 12.78662 3.281042e-23

r1 = 0.45

this will be an underestimate

because there is positive serial correlation



If the AR(1) model is adequate and

μ{ Tempt | Yeart } = β0 + β1t

Filtered variables:

Vt = Tempt - r1Tempt-1

Ut= t - r1( t - 1)

Regress Vt on Ut

> case1502$lag_Year <- c(NA, case1502$Year[-nrow(case1502)])

> case1502$lag_Temp <- c(NA, case1502$Temp[-nrow(case1502)])

> 

> # regress filtered variables

> fit_filt <- lm(I(Temp  - r1*lag_Temp) ~I(Year - r1*lag_Year) , data = case1502)

> summary(fit_filt)$coef

Estimate   Std. Error   t value     Pr(>|t|)

(Intercept)             -4.92680691 0.6154922045 -8.004662 1.709667e-12

I(Year - r1 * lag_Year)  0.00460353 0.0005809344  7.924355 2.562586e-12

2. Use filtering to get SE



1. Use adjustment to get SE

SEβ1= √(1 + r1)/(1 - r1)  SEβ1slr

> sqrt((1+r1)/(1- r1)) * summary(fit_slr)$coef[, 2]

(Intercept)         Year 

1.1068682408 0.0005723943 

> summary(fit_slr)$coef

Estimate   Std. Error   t value     Pr(>|t|)

(Intercept) -8.786714263 0.6795783683 -12.92966 1.592721e-23

Year         0.004493603 0.0003514301  12.78662 3.281042e-23



Examine for serial correlation in the 

residuals. Not the raw response.

The filtering method extends to 

multiple explanatories.



Testing for serial correlation

Large sample test

Z = r1/√n

If there is no serial correlation, Z has a Normal 

distribution.

only appropriate when n > 100

Runs test

Count how many runs there and compare to 

how many we would expect by chance alone 

with no serial correlation. non-parametric



Is the AR(1) model adequate?

The primary tool is the PACF plot:

Lag 1

95% CI for data 

with no serial correlation

pacf(residuals(fit_slr))



x
no serial correlation “easy” extension of AR(1)

complicated

probably needs a trend removed


