Stat 412/512

TRANSFORMING TO REMOVE SERIAL CORRELATION

Feb 25 2015

Charlotte Wickham

stat512.cwick.co.nz

Reminders

- DA #2 due today
- Regression in your field due Friday
- Quiz #3 this weekend
- Last homework released today due, next Wednesday.
- Study, study, study...
- Final exam Thursday March 19th noon-2pm
- Lastnames A-L WGR 153 (here)
- Lastnames M-Z Kidder 350

Serial correlation

a.k.a autocorrelation

Positive serial correlation: an observation on one side of the mean tends to be followed by another observation on the same side of the mean.

Positive serial correlation tends to lead to standard errors that are too small.

Two solutions

1. Adjust standard errors to be more appropriate.

2. Filter variables to remove correlation.

Either way you need to estimate the extent of the correlation (and make an assumption about it's structure).

More advanced methods explicitly model the correlation.

2. Filter variables to remove correlation.

If the AR(1) model is adequate and μ { Y_t | X_t} = $\beta_0 + \beta_1 X_t$ Then the **filtered** variables:

$$V_{t} = Y_{t} - \alpha Y_{t-1}$$

$$U_{t} = X_{t} - \alpha X_{t-1}$$
are related by the same slope:

$$\mu \{ V_{t} \mid U_{t} \} = \beta_{0}(1 - \alpha) + \beta_{1} U_{t}$$
with no serial correlation

$$U_{t} = \beta_{0}(1 - \alpha) + \beta_{1} U_{t}$$
Use related for α .
Filter response and explanatory.
Then regress filtered variables.

case1502: Global Temperature

The data are the temperatures (in degrees Celsius) averaged for the northern hemisphere over a full year, for years 1880 to 1987. The 108-year average temperature has been subtracted, so each observation is the temperature difference from the series average.

Your turn

Ignoring of the appropriateness of regression, how would you answer the question of interest?

Is the mean temperature increasing? $\mu(\text{Temp} | Yew) = \beta_0 + \beta_1 \text{ Yew}$ $\tau = \beta_0 + \beta_1 \text{ Yew}$

Is serial correlation a problem?

(est-1 qplot (c(NA, res), c(res, NA))

Use filtering to get SE

If the AR(1) model is adequate and

$$\mu$$
{ Tempt | Yeart } = β_0 + β_1 t <

Filtered variables:

 $V_{t} = Temp_{t} - r_{1}Temp_{t-1}, \qquad \text{(e) poiss}$ $U_{t} = t - r_{1}(t - 1) \qquad \text{explanatory}$ Regress V_{t} on U_{t}

Use adjustment to get SE

$$SE_{\beta_{1}} = \sqrt{(1 + r_{1})/(1 - r_{1})} SE_{\beta_{1} sir}$$

> sqrt((1+r1)/(1- r1)) * summary(fit_slr)\$coef[, 2]
 (Intercept) Year
1.1068682408 0.0005723943

Examine for serial correlation in the **residuals**. Not the raw response.

The filtering method extends to multiple explanatories.

Testing for serial correlation Large sample test $Z = r_1/\sqrt{n}$ If there is no serial correlation, Z has a Normal distribution.

only appropriate when n > 100

Runs test

Count how many runs there and compare to how many we would expect by chance alone with no serial correlation. non-parametric

For essesies with AR(1) structure you tend to see tag 1 pac large, (outside 95%, CI). And all other lags consistent with zero. AR(1) Pact fl- - - - - - - - - - - Lag Uncoscelated

Partial autocorrelation functions for four different types of time series

Lag