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Reminders

DA #2 due today

Regression in your field due Friday

Quiz #3 this weekend

Last homework released today due, next 
Wednesday.

Study, study, study...

Final exam Thursday March 19th noon-2pm

Lastnames A-L WGR 153 (here) 

Lastnames M-Z Kidder 350



Serial correlation

Positive serial correlation: an 
observation on one side of the mean 
tends to be followed by another 
observation on the same side of the 
mean.

Positive serial correlation tends to 
lead to standard errors that are too 
small. 

a.k.a autocorrelation



Two solutions

1. Adjust standard errors to be more 

appropriate.

2. Filter variables to remove correlation.

Either way you need to estimate the extent of 

the correlation (and make an assumption 

about it’s structure).

More advanced methods explicitly model the 

correlation.



2. Filter variables to remove correlation.

If the AR(1) model is adequate and

μ{ Yt | Xt } = β0 + β1Xt

Then the filtered variables:

Vt = Yt - αYt-1

Ut= Xt - αXt-1 

are related by the same slope:

μ{ Vt | Ut } = β0(1 - α) + β1Ut

with no serial correlation

Use r1 as an estimate for α. 

Filter response and explanatory. 

Then regress filtered variables. 



case1502: Global Temperature

The data are the temperatures (in degrees Celsius) averaged for 

the northern hemisphere over a full year, for years 1880 to 1987. 

The 108-year average temperature has been subtracted, so 

each observation is the temperature difference from the series 

average.



Your turn

Ignoring of the appropriateness of 

regression, how would you answer the 

question of interest?

Is the mean temperature increasing?



Is serial correlation a problem?

> fit_slr <- lm(Temp ~ Year, data = case1502)

> summary(fit_slr)$coef

Estimate   Std. Error   t value     Pr(>|t|)

(Intercept) -8.786714263 0.6795783683 -12.92966 1.592721e-23

Year         0.004493603 0.0003514301 12.78662 3.281042e-23

r1 = 0.45

this will be an underestimate

because there is positive serial correlation





If the AR(1) model is adequate and

μ{ Tempt | Yeart } = β0 + β1t

Filtered variables:

Vt = Tempt - r1Tempt-1

Ut= t - r1( t - 1)

Regress Vt on Ut

> case1502$lag_Year <- c(NA, case1502$Year[-nrow(case1502)])

> case1502$lag_Temp <- c(NA, case1502$Temp[-nrow(case1502)])

> 

> # regress filtered variables

> fit_filt <- lm(I(Temp  - r1*lag_Temp) ~I(Year - r1*lag_Year) , data = case1502)

> summary(fit_filt)$coef

Estimate   Std. Error   t value     Pr(>|t|)

(Intercept)             -4.92680691 0.6154922045 -8.004662 1.709667e-12

I(Year - r1 * lag_Year)  0.00460353 0.0005809344  7.924355 2.562586e-12

Use filtering to get SE



Use adjustment to get SE

SEβ1= √(1 + r1)/(1 - r1)  SEβ1slr

> sqrt((1+r1)/(1- r1)) * summary(fit_slr)$coef[, 2]

(Intercept)         Year 

1.1068682408 0.0005723943 

> summary(fit_slr)$coef

Estimate   Std. Error   t value     Pr(>|t|)

(Intercept) -8.786714263 0.6795783683 -12.92966 1.592721e-23

Year         0.004493603 0.0003514301  12.78662 3.281042e-23



Examine for serial correlation in the 

residuals. Not the raw response.

The filtering method extends to 

multiple explanatories.



Testing for serial correlation

Large sample test

Z = r1/√n

If there is no serial correlation, Z has a Normal 

distribution.

only appropriate when n > 100

Runs test

Count how many runs there and compare to 

how many we would expect by chance alone 

with no serial correlation. non-parametric



Is the AR(1) model adequate?

The primary tool is the PACF plot:

Lag 1

95% CI for data 

with no serial correlation

pacf(residuals(fit_slr))





no serial correlation “easy” extension of AR(1)

complicated

probably needs a trend removed


